二次根式(1)教案推薦5篇

時間:2023-09-05 作者:loser 備課教案

我們要鼓勵教師參加教案設(shè)計的培訓課程,一份優(yōu)秀的教案評估應該基于客觀的標準,范文社小編今天就為您帶來了二次根式(1)教案推薦5篇,相信一定會對你有所幫助。

二次根式(1)教案推薦5篇

二次根式(1)教案篇1

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

二次根式的性質(zhì)。

2.內(nèi)容解析

本節(jié)教材是在學生學習二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).

對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質(zhì).

二、目標和目標解析

1.教學目標

(1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

(2)會運用二次根式的性質(zhì)進行二次根式的化簡;

(3)了解代數(shù)式的概念.

2.目標解析

(1)學生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);

(2)學生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;

(3)學生能從已學過的各種式子中,體會其共同特點,得出代數(shù)式的概念.

三、教學問題診斷分析

二次根式的性質(zhì)是二次根式化簡和運算的重要基礎(chǔ).學生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習題,讓學生在練習中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.

本節(jié)課的教學難點為:二次根式性質(zhì)的靈活運用.

四、教學過程設(shè)計

1.探究性質(zhì)1

問題1 你能解釋下列式子的含義嗎?

師生活動:教師引導學生說出每一個式子的含義.

?設(shè)計意圖】讓學生初步感知,這些式子都表示一個非負數(shù)的算術(shù)平方根的平方.

問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).

?設(shè)計意圖】學生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0).

?設(shè)計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學生抽象概括的能力.

例2 計算

(1) ;(2) .

師生活動:學生獨立完成,集體訂正.

?設(shè)計意圖】鞏固二次根式的性質(zhì)1,學會靈活運用.

2.探究性質(zhì)2

問題4 你能解釋下列式子的含義嗎?

師生活動:教師引導學生說出每一個式子的含義.

?設(shè)計意圖】讓學生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.

問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).

?設(shè)計意圖】學生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0)

?設(shè)計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學生抽象概括的能力.

例3 計算

(1) ;(2) .

師生活動:學生獨立完成,集體訂正.

?設(shè)計意圖】鞏固二次根式的性質(zhì)2,學會靈活運用.

3.歸納代數(shù)式的概念

問題7 回顧我們學過的式子,如, ( ≥0),這些式子有哪些共同特征?

師生活動:學生概括式子的共同特征,得出代數(shù)式的概念.

?設(shè)計意圖】學生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學生的概括能力.

4.綜合運用

(1)算一算:

?設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.

(2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

?設(shè)計意圖】通過此問題的設(shè)計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

(3)談一談你對 與 的認識.

?設(shè)計意圖】加深學生對二次根式性質(zhì)的理解.

5.總結(jié)反思

(1)你知道了二次根式的哪些性質(zhì)?

(2)運用二次根式性質(zhì)進行化簡需要注意什么?

(3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

(4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.

6.布置作業(yè):教科書習題16.1第2,4題.

二次根式(1)教案篇2

第十六章 二次根式

代數(shù)式用運算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,”;②單個的數(shù)字或單個的字母也是代數(shù)式5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)

6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

7.解:(1) . (2)寬:3 ;長:5 .

8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

9.解:原式=-=-.∵x=6,∴x+1>0,x-8

10.解析:在利用=|a|=化簡二次根式時,當根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.

解:乙的解答是錯誤的.因為當a=時,=5,a-

本節(jié)課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發(fā)展和提高.

在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學生發(fā)揮主體作用不夠.

在探究完成二次根式的性質(zhì)1后,總結(jié)學習方法,再放手讓學生自主探究二次根式的性質(zhì)2.既可以提高學習效率,又可以培養(yǎng)學生自學能力.

練習(教材第4頁)

1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

習題16.1(教材第5頁)

1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.

2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

3.解:(1)設(shè)圓的半徑為r,由圓的面積公式得s=πr2,所以r2=,所以r=± .因為圓的半徑不能是負數(shù),所以r=-不符合題意,舍去,故r= ,即面積為s的圓的半徑為 . (2)設(shè)較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=s,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

6.解:設(shè)ab=x,則ab邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故ab的長為.

7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當x>0時, 在實數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當x>-1時,在實數(shù)范圍內(nèi)有意義.

8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.

9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

10.解:v=πr2×10,r= (負值已舍去),當v=5π時, r= =,當v=10π時,r= =1,當v=20π時,r= =.

如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的`位置,化簡:+.

?解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.

解:由數(shù)軸可得:a+b0,∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

[解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

已知a,b,c為三角形的三條邊,則+= .

?解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c

[解題策略] 此類化簡問題要特別注意符號問題.

化簡:.

?解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x

解:當x≥3時,=|x-3|=x-3;

當x

[解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進行討論.

5

o

m

二次根式(1)教案篇3

一、教學目標

1。使學生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

2。使學生掌握化簡一個二次根式成最簡二次根式的方法。

3。使學生了解把二次根式化簡成最簡二次根式在實際問題中的應用。

二、教學重點和難點

1。重點:能夠把所給的二次根式,化成最簡二次根式。

2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

三、教學方法

通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的方法。

四、教學手段

利用投影儀。

五、教學過程

(一)引入新課

提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

了。這樣會給解決實際問題帶來方便。

(二)新課

由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

這兩個二次根式化簡前后有什么不同,這里要引導學生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

例1 指出下列根式中的最簡二次根式,并說明為什么。

分析:

說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結(jié)果也都是最簡二次根式。

例2 把下列各式化成最簡二次根式:

說明:引導學生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

例3 把下列各式化簡成最簡二次根式:

說明:

1。引導學生觀察例題3中二次根式的特點,即被開方數(shù)是分數(shù)或分式,再啟發(fā)學生總結(jié)這類題化簡的方法,先利用商的`算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。

2。要提問學生

問題,通過這個小題使學生明確如何使用化簡中的條件。

通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導學生小結(jié)應該注意的問題。

注意:

①化簡時,一般需要把被開方數(shù)分解因數(shù)或分解因式。

②當一個式子的分母中含有二次根式時,一般應該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

(三)小結(jié)

1。滿足什么條件的根式是最簡二次根式。

2。把一個二次根式化成最簡二次根式的主要方法。

(四)練習

1。指出下列各式中的最簡二次根式:

2。把下列各式化成最簡二次根式:

六、作業(yè)

教材p。187習題11。4;a組1;b組1。

七、板書設(shè)計

二次根式(1)教案篇4

【 學習目標 】

1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負性,并能應用它解決相關(guān)問題。

2、過程與方法:進一步體會分類討論的數(shù)學思想。

3、情感、態(tài)度與價值觀:通過小組合作學習,體驗在合作探索中學習數(shù)學的樂趣。

【 學習重難點 】

1、重點:準確理解二次根式的概念,并能進行簡單的計算。

2、難點:準確理解二次根式的雙重非負性。

【 學習內(nèi)容 】課本第2— 3頁

【 學習流程 】

一、 課前準備(預習學案見附件1)

學生在家中認真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預習學案。

二、 課堂教學

(一)合作學習階段。

教師出示課堂教學目標及引導材料,各學習小組結(jié)合本節(jié)課學習目標,根據(jù)課堂引導材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學習中碰到的問題。組內(nèi)各成員根據(jù)課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀察各小組合作學習的`情況,并進行及時的引導、點撥,對普遍存在的問題做好記錄。

(二)集體講授階段。(15分鐘左右)

1. 各小組推選代表依次對課堂引導材料中的問題進行解答,不足的本組成員可以補充。

2. 教師對合作學習中存在的普遍的不能解決的問題進行集體講解。

3. 各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

(三)當堂檢測階段

為了及時了解本節(jié)課學生的學習效果,及對本節(jié)課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。

(注:合作學習階段與集體講授階段可以根據(jù)授課內(nèi)容進行適當調(diào)整次序或交叉進行)

三、 課后作業(yè)(課后作業(yè)見附件2)

教師發(fā)放根據(jù)本節(jié)課所學內(nèi)容制定的針對性作業(yè),以幫助學生進一步鞏固提高課堂所學。

四、板書設(shè)計

課題:二次根式(1)

二次根式概念 例題 例題

二次根式性質(zhì)

反思:

二次根式(1)教案篇5

教案

教法:

1、引導發(fā)現(xiàn)法:通過教師精心設(shè)計的問題鏈,使學生產(chǎn)生認知沖突,感悟新知,建立分式的模型,引導學生觀察、類比、參與問題討論,使感性認識上升為理性認識,充分體現(xiàn)了教師主導和學生主體的作用,對實現(xiàn)教學目標起了重要的作用;

2、講練結(jié)合法:在例題教學中,引導學生閱讀,與平方根進行類比,獲得解決問題的方法后配以精講,并進行分層練習,培養(yǎng)學生的閱讀習慣和規(guī)范的解題格式。

學法:

1、類比的方法通過觀察、類比,使學生感悟二次根式的模型,形成有效的學習策略。

2、閱讀的方法讓學生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。

3、分組討論法將自己的意見在小組內(nèi)交換,達到取長補短,體驗學習活動中的交流與合作。

4、練習法采用不同的練習法,鞏固所學的`知識;利用教材進行自檢,小組內(nèi)進行他檢,提高學生的素質(zhì)。

知識點

上節(jié)課我們認識了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來學習。

二、展示目標,自主學習:

自學指導:認真閱讀課本第3頁——4頁內(nèi)容,完成下列任務(wù):

1、請比較與0的大小,你得到的結(jié)論是:________________________。

2、完成3頁“探究”中的填空,你得到的結(jié)論是____________________。

3、看例2是怎樣利用性質(zhì)進行計算的。

4、完成4頁“探究”中的填空,你得到的結(jié)論是:____________________。

5 、看懂例3,有困難可與同伴交流或問老師。

課時作業(yè)

教師節(jié)要到了,為了表示對老師的敬意,小明做了兩張大小不同的正方形壁畫準備送給老師,其中一張面積為800 cm2,另一張面積為450 cm2,他想如果再用金彩帶把壁畫的邊鑲上會更漂亮,他現(xiàn)在有1.2 m長的金彩帶,請你幫助算一算,他的金彩帶夠用嗎?如果不夠,還需買多長的金彩帶?(≈1.414,結(jié)果保留整數(shù))