正弦定理的教案6篇

時間:2022-12-12 作者:lcbkmm 備課教案

為了提升個人的教學(xué)能力,需要制定一份出色的教案,教案的制定是為了讓老師的課堂更豐富,下面是范文社小編為您分享的正弦定理的教案6篇,感謝您的參閱。

正弦定理的教案6篇

正弦定理的教案篇1

一、教學(xué)內(nèi)容分析

本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時,它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識在三角形中的具體運用,是生產(chǎn)、生活實際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。

本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識,使學(xué)生掌握新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點,學(xué)生通過對定理證明的探究和討論,體驗到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進(jìn)而培養(yǎng)學(xué)生提出問題、解決問題等研究性學(xué)習(xí)的能力。

二、學(xué)情分析

對高一的學(xué)生來說,一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識,具有一定觀察分析、解決問題的能力;但另一方面對新舊知識間的聯(lián)系、理解、應(yīng)用往往會出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點,教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動性,注意前后知識間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問題、解決問題。

三、設(shè)計思想:

培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)、學(xué)會探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)、學(xué)會探究呢?建構(gòu)主義認(rèn)為:“知識不是被動吸收的,而是由認(rèn)知主體主動建構(gòu)的。”這個觀點從教學(xué)的角度來理解就是:知識不僅是通過教師傳授得到的,更重要的是學(xué)生在一定的情境中,運用已有的學(xué)習(xí)經(jīng)驗,并通過與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個原則而進(jìn)行設(shè)計。

四、教學(xué)目標(biāo):

1、在創(chuàng)設(shè)的問題情境中,讓學(xué)生從已有的幾何知識和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗坐標(biāo)法將幾何問題轉(zhuǎn)化為代數(shù)問題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性。

2、理解三角形面積公式,能運用正弦定理解決三角形的兩類基本問題,并初步認(rèn)識用正弦定理解三角形時,會有一解、兩解、無解三種情況。

3、通過對實際問題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識既來源于生活,又服務(wù)與生活。

五、教學(xué)重點與難點

教學(xué)重點:正弦定理的探索與證明;正弦定理的基本應(yīng)用。

教學(xué)難點:正弦定理的探索與證明。

突破難點的手段:抓知識選擇的切入點,從學(xué)生原有的認(rèn)知水平和所需的知識特點入手,教師在學(xué)生主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。

六、復(fù)習(xí)引入:

1、在任意三角形行中有大邊對大角,小邊對小角的邊角關(guān)系?是否可以把邊、角關(guān)系準(zhǔn)確量化?

2、在abc中,角a、b、c的正弦對邊分別是a,b,c,你能發(fā)現(xiàn)它們之間有什么關(guān)系嗎?

結(jié)論:

證明:(向量法)過a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。

正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等。

七、教學(xué)反思

本節(jié)是“正弦定理”定理的第一節(jié),在備課中有兩個問題需要精心設(shè)計。一個是問題的引入,一個是定理的證明。通過兩個實際問題引入,讓學(xué)生體會為什么要學(xué)習(xí)這節(jié)課,從學(xué)生的“最近發(fā)展區(qū)”入手進(jìn)行設(shè)計,尋求解決問題的方法。具體的思路就是從解決課本的實際問題入手展開,將問題一般化導(dǎo)出三角形中的邊角關(guān)系——正弦定理。因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識,也能讓學(xué)生掌握新的有用的知識,有效提高學(xué)生解決問題的能力。

1、在教學(xué)過程中,我注重引導(dǎo)學(xué)生的思維發(fā)生,發(fā)展,讓學(xué)生體會數(shù)學(xué)問題是如何解決的,給學(xué)生解決問題的一般思路。從學(xué)生熟悉的直角三角形邊角關(guān)系,把銳角三角形和鈍角三角形的問題也轉(zhuǎn)化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數(shù)形結(jié)合思想等思想。

2、在教學(xué)中我恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點的一個重要手段。利用《幾何畫板》探究比值的值,由動到靜,取得了很好的效果,加深了學(xué)生的印象。

3、由于設(shè)計的內(nèi)容比較的多,教學(xué)時間的超時,這說明我自己對學(xué)生情況的把握不夠準(zhǔn)確到位,致使教學(xué)過程中時間的分配不夠適當(dāng),教學(xué)語言不夠精簡,今后我一定避免此類問題,爭取更大的進(jìn)步。

正弦定理的教案篇2

一、教材分析

?正弦定理》是人教版教材必修五第一章《解三角形》的第一節(jié)內(nèi)容,也是三角形理論中的一個重要內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系。在此之前,學(xué)生已經(jīng)學(xué)習(xí)過了正弦函數(shù)和余弦函數(shù),知識儲備已足夠。它是后續(xù)課程中解三角形的理論依據(jù),也是解決實際生活中許多測量問題的工具。因此熟練掌握正弦定理能為接下來學(xué)習(xí)解三角形打下堅實基礎(chǔ),并能在實際應(yīng)用中靈活變通。

二、教學(xué)目標(biāo)

根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

知識目標(biāo):理解并掌握正弦定理的證明,運用正弦定理解三角形。

能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論,并能掌握多種證明方法。

情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實際應(yīng)用價值。

三、教學(xué)重難點

教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

四、教法分析

依據(jù)本節(jié)課內(nèi)容的特點,學(xué)生的認(rèn)識規(guī)律,本節(jié)知識遵循以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想,采用與學(xué)生共同探索的教學(xué)方法,命題教學(xué)的發(fā)生型模式,以問題實際為參照對象,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化,并且運用例題和習(xí)題來強化內(nèi)容的掌握,突破重難點。即指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法。學(xué)生采用自主式、合作式、探討式的學(xué)習(xí)方法,這樣能使學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動,培養(yǎng)學(xué)生的合作意識和探究精神。

五、教學(xué)過程

本節(jié)知識教學(xué)采用發(fā)生型模式:

1、問題情境

有一個旅游景點,為了吸引更多的游客,想在風(fēng)景區(qū)兩座相鄰的山之間搭建一條觀光索道。已知一座山a到山腳c的上面斜距離是1500米,在山腳測得兩座山頂之間的夾角是450,在另一座山頂b測得山腳與a山頂之間的夾角是300。求需要建多長的索道?

可將問題數(shù)學(xué)符號化,抽象成數(shù)學(xué)圖形。即已知ac=1500m,∠c=450,∠b=300。求ab=?

此題可運用做輔助線bc邊上的高來間接求解得出。

提問:有沒有根據(jù)已提供的數(shù)據(jù),直接一步就能解出來的方法?

思考:我們知道,在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系。那我們能不能得到關(guān)于邊、角關(guān)系準(zhǔn)確量化的表示呢?

2、歸納命題

我們從特殊的三角形直角三角形中來探討邊與角的數(shù)量關(guān)系:

在如圖rt三角形abc中,根據(jù)正弦函數(shù)的定義

正弦定理的教案篇3

一、教材地位與作用

本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時??家恍┙獯痤},

高中數(shù)學(xué)必修五《正弦定理》說課稿

?因此,正弦定理的知識非常重要。

二、學(xué)情分析

作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問題,就比較困難。

教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點,我制定了如下幾點教學(xué)目標(biāo)

教學(xué)目標(biāo)分析:

知識目標(biāo):理解并掌握正弦定理的證明,運用正弦定理解三角形。

能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。

情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實際應(yīng)用價值。

三、教法學(xué)法分析

教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動手嘗試相結(jié)合,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。

四、教學(xué)過程

(一)創(chuàng)設(shè)情境,布疑激趣

“興趣是最好的`老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠a=47°,∠b=53°,ab長為1m,想修好這個零件,但他不知道 ac和bc的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

(二)探尋特例,提出猜想

1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。

3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:

在三角形中,角與所對的邊滿足關(guān)系

這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性,

(三)邏輯推理,證明猜想

1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明。

(四)歸納總結(jié),簡單應(yīng)用

1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ?,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。

(五)講解例題,鞏固定理

1.例1:在△abc中,已知a=32°,b=81.8°,a=42.9cm.解三角形。

例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

2.例2:在△abc中,已知a=20cm,b=28cm,a=40°,解三角形。

例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。

(六)課堂練習(xí),提高鞏固

1.在△abc中,已知下列條件,解三角形。

(1)a=45°,c=30°,c=10cm(2)a=60°,b=45°,c=20cm

2.在△abc中,已知下列條件,解三角形。

(1)a=20cm,b=11cm,b=30°(2)c=54cm,b=39cm,c=115°

學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

(七)小結(jié)反思,提高認(rèn)識

通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

2.它表述了三角形的邊與對角的正弦值的關(guān)系。

3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)

(八)任務(wù)后延,自主探究

如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

正弦定理的教案篇4

本節(jié)內(nèi)容是正弦定理教學(xué)的第一節(jié)課,其主要任務(wù)是引入并證明正弦定理.做好正弦定理的教學(xué),不僅能復(fù)習(xí)鞏固舊知識,使學(xué)生掌握新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點,而且能培養(yǎng)學(xué)生的應(yīng)用意識和實踐操作能力,以及提出問題、解決問題等研究性學(xué)習(xí)的能力.

本節(jié)課以及后面的解三角形中涉及到計算器的使用與近似計算,這是一種基本運算能力,學(xué)生基本上已經(jīng)掌握了.若在解題中出現(xiàn)了錯誤,則應(yīng)及時糾正,若沒出現(xiàn)問題就順其自然,不必花費過多的時間.

本節(jié)可結(jié)合課件“正弦定理猜想與驗證”學(xué)習(xí)正弦定理.

三維目標(biāo)

1.通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法,會運用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問題.

2.通過正弦定理的探究學(xué)習(xí),培養(yǎng)學(xué)生探索數(shù)學(xué)規(guī)律的思維能力,培養(yǎng)學(xué)生用數(shù)學(xué)的方法去解決實際問題的能力.通過學(xué)生的積極參與和親身實踐,并成功解決實際問題,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的熱情,培養(yǎng)學(xué)生獨立思考和勇于探索的創(chuàng)新精神.

重點難點

教學(xué)重點:正弦定理的證明及其基本運用.

教學(xué)難點:正弦定理的探索和證明;已知兩邊和其中一邊的對角解三角形時,判斷解的個數(shù).

課時安排

1課時

教學(xué)過程

導(dǎo)入新課

思路1.(特例引入)教師可先通過直角三角形的特殊性質(zhì)引導(dǎo)學(xué)生推出正弦定理形式,如rt△abc中的邊角關(guān)系,若∠c為直角,則有a=csina,b=csinb,這兩個等式間存在關(guān)系嗎?學(xué)生可以得到asina=bsinb,進(jìn)一步提問,等式能否與邊c和∠c建立聯(lián)系?從而展開正弦定理的探究.

思路2.(情境導(dǎo)入)如圖,某農(nóng)場為了及時發(fā)現(xiàn)火情,在林場中設(shè)立了兩個觀測點a和b,某日兩個觀測點的林場人員分別測到c處有火情發(fā)生.在a處測到火情在北偏西40°方向,而在b處測到火情在北偏西60°方向,已知b在a的正東方向10千米處.現(xiàn)在要確定火場c距a、b多遠(yuǎn)?將此問題轉(zhuǎn)化為數(shù)學(xué)問題,即“在△abc中,已知∠cab=130°,∠cba=30°,ab=10千米,求ac與bc的長.”這就是一個解三角形的問題.為此我們需要學(xué)習(xí)一些解三角形的必要知識,今天要探究的是解三角形的第一個重要定理——正弦定理,由此展開新課的探究學(xué)習(xí).

推進(jìn)新課

新知探究

提出問題

1閱讀本章引言,明確本章將學(xué)習(xí)哪些內(nèi)容及本章將要解決哪些問題?

2聯(lián)想學(xué)習(xí)過的三角函數(shù)中的邊角關(guān)系,能否得到直角三 角形中角與它所對的邊之間在數(shù)量上有什么關(guān)系?

3由2得到的數(shù)量關(guān)系式,對一般三角形是否仍然成立?

4正弦定理的內(nèi)容是什么,你能用文字語言敘述它嗎?你能用哪些方法證明它?

5什么叫做解三角形?

6利用正弦定理可以解決一些怎樣的三角形問題呢?

活動:教師引導(dǎo)學(xué)生閱讀本章引言,點出本章數(shù)學(xué)知識的某些重要的實際背景及其實際需要,使學(xué)生初步認(rèn)識到學(xué)習(xí)解三角形知識的必要性.如教師可提出以下問題:怎樣在航行途中測出海上兩個島嶼之間的距離?怎樣測出海上航行的輪船的航速和航向?怎樣測量底部不可到達(dá)的建筑物的高度?怎樣在水平飛行的飛機上測量飛機下方山頂?shù)暮0胃叨??這些實際問題的解決需要我們進(jìn)一步學(xué)習(xí)任意三角形中邊與角關(guān)系的有關(guān)知識.讓學(xué)生明確本章將要學(xué)習(xí)正弦定理和余弦定理,并學(xué)習(xí)應(yīng)用這兩個定理解三角形及解決測量中的一些問題.

關(guān)于任意三角形中大邊對大角、小 邊對小角的邊角關(guān)系,教師引導(dǎo)學(xué)生探究其數(shù)量關(guān)系.先觀察特殊的直角三角形.如下圖,在rt△abc中,設(shè)bc=a,ac=b,ab=c,根據(jù)銳角三角函數(shù)中正弦函數(shù)的定義,有ac=sina,bc=sinb,又sinc=1=cc,則asina=bsinb=csinc=c.從而在rt△abc中,asina=bsinb=csinc.

那么對于任意的三角形,以上關(guān)系式是否仍然成立呢?教師引導(dǎo)學(xué)生畫圖討論分析.

如下圖,當(dāng)△abc是銳角三角形時,設(shè)邊ab上的高是cd,根據(jù)任意角的三角函數(shù)的定義,有cd=asinb=bsina,則asina=bsinb.同理,可得csinc=bsinb.從而asina=bsinb=csinc.

(當(dāng)△abc是鈍角三角形時,解法類似銳角三角形的情況,由學(xué)生自己完成)

通過上面的討論和探究,我們知道在任意三角形中,上述等式都成立.教師點出這就是今天要學(xué)習(xí)的三角形中的重要定理——正弦定理.

正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等,即

asina=bsinb=csinc

上述的探究過程就是正弦定理的證明方法,即分直角三角形、銳角三角形、鈍角三角形三種情況進(jìn)行證明.教師提醒學(xué)生要掌握這種由特殊到一般的分類證明思想,同時點撥學(xué)生觀察正弦定理的特征.它指出了任意三角形中,各邊與其對應(yīng)角的正弦之間的一個關(guān)系式.正弦定理的重要性在于它非常好地描述了任意三角形中邊與角的一種數(shù)量關(guān)系;描述了任意三角形中大邊對大角的一種準(zhǔn)確的數(shù)量關(guān)系.因為如果∠a<∠b,由三角形性質(zhì),得a<b.當(dāng)∠a、∠b都是銳角,由正弦函數(shù)在區(qū)間(0,π2)上的單調(diào)性,可知sina<sinb.當(dāng)∠a是銳角,∠b是鈍角時,由于∠a+∠b<π,因此∠b<π-∠a,由正弦函數(shù)在區(qū)間(π2,π)上的單調(diào)性,可知sinb>sin(π-a)=sina,所以仍有sina<sinb.

正弦定理的證明方法很多,除了上述的證明方法以外,教師鼓勵學(xué)生課下進(jìn)一步探究正弦定理的其他證明方法.

討論結(jié)果:

(1)~(4)略.

(5)已知三角形的幾個元素(把三角形的三個角a、b、c和它們的對邊a、b、c叫做三角形的元素)求其他元素的過程叫做解三角形.

(6)應(yīng)用正弦定理可解決兩類解三角形問題:①已知三角形的任意兩個角與一邊,由三角形內(nèi)角和定理,可以計算出三角形的另一角,并由正弦定理計算出三角形的另兩邊,即“兩角一邊問題”.這類問題的解是唯一的.②已知三 角形的任意兩邊與其中一邊的對角,可以計算出另一邊的對角的正弦值,進(jìn)而確定這個角和三角形其他的邊和 角,即“兩邊一對角問題”.這類問題的答案有時不是唯一的,需根據(jù)實際情況分類討論.

應(yīng)用示例

例1在△abc中,已知∠a=32.0°,∠b=81.8°,a=42.9 cm,解此三角形.

活動:解三角形就是已知三角形的某些邊和角,求其他的邊和角的過程,在本例中就是求解∠c,b,c.

此題屬于已知兩角和其中一角所對邊的問題,直接應(yīng)用正弦定理可求出邊b,若求邊c,則先求∠c,再利用正弦定理即可.

解:根據(jù)三角形內(nèi)角和定理,得

∠c=180°-(∠a+∠b)=180°-(32.0°+81.8°)=66.2°。

根據(jù)正弦定理,得

b=asinbsina=42.9sin81.8°sin32.0°≈80.1(cm);

c=asincsina=42.9sin66.2°sin32.0°≈74.1(cm).

點評:(1)此類問題結(jié)果為唯一解,學(xué)生較易掌握,如果已知兩角及兩角所夾的邊,也是先利用三角形內(nèi)角和定理180°求出第三個角,再利用正弦定理.

正弦定理的教案篇5

高中數(shù)學(xué)正弦定理教案,一起拉看看吧。

本節(jié)內(nèi)容是正弦定理教學(xué)的第一節(jié)課,其主要任務(wù)是引入并證明正弦定理.做好正弦定理的教學(xué),不僅能復(fù)習(xí)鞏固舊知識,使學(xué)生掌握新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點,而且能培養(yǎng)學(xué)生的應(yīng)用意識和實踐操作能力,以及提出問題、解決問題等研究性學(xué)習(xí)的能力.

本節(jié)課以及后面的解三角形中涉及到計算器的使用與近似計算,這是一種基本運算能力,學(xué)生基本上已經(jīng)掌握了.若在解題中出現(xiàn)了錯誤,則應(yīng)及時糾正,若沒出現(xiàn)問題就順其自然,不必花費過多的時間.

本節(jié)可結(jié)合課件“正弦定理猜想與驗證”學(xué)習(xí)正弦定理.

三維目標(biāo)

1.通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法,會運用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問題.

2.通過正弦定理的探究學(xué)習(xí),培養(yǎng)學(xué)生探索數(shù)學(xué)規(guī)律的思維能力,培養(yǎng)學(xué)生用數(shù)學(xué)的方法去解決實際問題的能力.通過學(xué)生的積極參與和親身實踐,并成功解決實際問題,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的熱情,培養(yǎng)學(xué)生獨立思考和勇于探索的創(chuàng)新精神.

重點難點

教學(xué)重點:正弦定理的證明及其基本運用.

教學(xué)難點:正弦定理的探索和證明;已知兩邊和其中一邊的對角解三角形時,判斷解的個數(shù).

課時安排

1課時

教學(xué)過程

導(dǎo)入新課

思路1.(特例引入)教師可先通過直角三角形的特殊性質(zhì)引導(dǎo)學(xué)生推出正弦定理形式,如rt△abc中的邊角關(guān)系,若∠c為直角,則有a=csina,b=csinb,這兩個等式間存在關(guān)系嗎?學(xué)生可以得到asina=bsinb,進(jìn)一步提問,等式能否與邊c和∠c建立聯(lián)系?從而展開正弦定理的探究.

思路2.(情境導(dǎo)入)如圖,某農(nóng)場為了及時發(fā)現(xiàn)火情,在林場中設(shè)立了兩個觀測點a和b,某日兩個觀測點的林場人員分別測到c處有火情發(fā)生.在a處測到火情在北偏西40°方向,而在b處測到火情在北偏西60°方向,已知b在a的正東方向10千米處.現(xiàn)在要確定火場c距a、b多遠(yuǎn)?將此問題轉(zhuǎn)化為數(shù)學(xué)問題,即“在△abc中,已知∠cab=130°,∠cba=30°,ab=10千米,求ac與bc的長.”這就是一個解三角形的問題.為此我們需要學(xué)習(xí)一些解三角形的必要知識,今天要探究的是解三角形的第一個重要定理——正弦定理,由此展開新課的探究學(xué)習(xí).

推進(jìn)新課

新知探究

提出問題

1閱讀本章引言,明確本章將學(xué)習(xí)哪些內(nèi)容及本章將要解決哪些問題?

2聯(lián)想學(xué)習(xí)過的三角函數(shù)中的邊角關(guān)系,能否得到直角三 角形中角與它所對的邊之間在數(shù)量上有什么關(guān)系?

3由2得到的數(shù)量關(guān)系式,對一般三角形是否仍然成立?

4正弦定理的內(nèi)容是什么,你能用文字語言敘述它嗎?你能用哪些方法證明它?

5什么叫做解三角形?

6利用正弦定理可以解決一些怎樣的三角形問題呢?

活動:教師引導(dǎo)學(xué)生閱讀本章引言,點出本章數(shù)學(xué)知識的某些重要的實際背景及其實際需要,使學(xué)生初步認(rèn)識到學(xué)習(xí)解三角形知識的必要性.如教師可提出以下問題:怎樣在航行途中測出海上兩個島嶼之間的距離?怎樣測出海上航行的輪船的航速和航向?怎樣測量底部不可到達(dá)的建筑物的高度?怎樣在水平飛行的飛機上測量飛機下方山頂?shù)暮0胃叨龋窟@些實際問題的解決需要我們進(jìn)一步學(xué)習(xí)任意三角形中邊與角關(guān)系的有關(guān)知識.讓學(xué)生明確本章將要學(xué)習(xí)正弦定理和余弦定理,并學(xué)習(xí)應(yīng)用這兩個定理解三角形及解決測量中的一些問題.

關(guān)于任意三角形中大邊對大角、小 邊對小角的邊角關(guān)系,教師引導(dǎo)學(xué)生探究其數(shù)量關(guān)系.先觀察特殊的直角三角形.如下圖,在rt△abc中,設(shè)bc=a,ac=b,ab=c,根據(jù)銳角三角函數(shù)中正弦函數(shù)的定義,有ac=sina,bc=sinb,又sinc=1=cc,則asina=bsinb=csinc=c.從而在rt△abc中,asina=bsinb=csinc.

那么對于任意的三角形,以上關(guān)系式是否仍然成立呢?教師引導(dǎo)學(xué)生畫圖討論分析.

如下圖,當(dāng)△abc是銳角三角形時,設(shè)邊ab上的高是cd,根據(jù)任意角的三角函數(shù)的定義,有cd=asinb=bsina,則asina=bsinb.同理,可得csinc=bsinb.從而asina=bsinb=csinc.

(當(dāng)△abc是鈍角三角形時,解法類似銳角三角形的情況,由學(xué)生自己完成)

通過上面的討論和探究,我們知道在任意三角形中,上述等式都成立.教師點出這就是今天要學(xué)習(xí)的三角形中的重要定理——正弦定理.

正弦定理:在一個三角形中,各邊和它所對角的'正弦的比相等,即

asina=bsinb=csinc

上述的探究過程就是正弦定理的證明方法,即分直角三角形、銳角三角形、鈍角三角形三種情況進(jìn)行證明.教師提醒學(xué)生要掌握這種由特殊到一般的分類證明思想,同時點撥學(xué)生觀察正弦定理的特征.它指出了任意三角形中,各邊與其對應(yīng)角的正弦之間的一個關(guān)系式.正弦定理的重要性在于它非常好地描述了任意三角形中邊與角的一種數(shù)量關(guān)系;描述了任意三角形中大邊對大角的一種準(zhǔn)確的數(shù)量關(guān)系.因為如果∠a<∠b,由三角形性質(zhì),得a<b.當(dāng)∠a、∠b都是銳角,由正弦函數(shù)在區(qū)間(0,π2)上的單調(diào)性,可知sina<sinb.當(dāng)∠a是銳角,∠b是鈍角時,由于∠a+∠b<π,因此∠b<π-∠a,由正弦函數(shù)在區(qū)間(π2,π)上的單調(diào)性,可知sinb>sin(π-a)=sina,所以仍有sina<sinb.

正弦定理的證明方法很多,除了上述的證明方法以外,教師鼓勵學(xué)生課下進(jìn)一步探究正弦定理的其他證明方法.

討論結(jié)果:

(1)~(4)略.

(5)已知三角形的幾個元素(把三角形的三個角a、b、c和它們的對邊a、b、c叫做三角形的元素)求其他元素的過程叫做解三角形.

(6)應(yīng)用正弦定理可解決兩類解三角形問題:①已知三角形的任意兩個角與一邊,由三角形內(nèi)角和定理,可以計算出三角形的另一角,并由正弦定理計算出三角形的另兩邊,即“兩角一邊問題”.這類問題的解是唯一的.②已知三 角形的任意兩邊與其中一邊的對角,可以計算出另一邊的對角的正弦值,進(jìn)而確定這個角和三角形其他的邊和 角,即“兩邊一對角問題”.這類問題的答案有時不是唯一的,需根據(jù)實際情況分類討論.

應(yīng)用示例

例1在△abc中,已知∠a=32.0°,∠b=81.8°,a=42.9 cm,解此三角形.

活動:解三角形就是已知三角形的某些邊和角,求其他的邊和角的過程,在本例中就是求解∠c,b,c.

此題屬于已知兩角和其中一角所對邊的問題,直接應(yīng)用正弦定理可求出邊b,若求邊c,則先求∠c,再利用正弦定理即可.

解:根據(jù)三角形內(nèi)角和定理,得

∠c=180°-(∠a+∠b)=180°-(32.0°+81.8°)=66.2°.

根據(jù)正弦定理,得

b=asinbsina=42.9sin81.8°sin32.0°≈80.1(cm);

c=asincsina=42.9sin66.2°sin32.0°≈74.1(cm).

點評:(1)此類問題結(jié)果為唯一解,學(xué)生較易掌握,如果已知兩角及兩角所夾的邊,也是先利用三角形內(nèi)角和定理180°求出第三個角,再利用正弦定理.

正弦定理的教案篇6

向量證明正弦定理

表述:設(shè)三面角∠p-abc的三個面角∠bpc,∠cpa,∠apb所對的二面角依次為∠pa,∠pb,∠pc,則 sin∠pa/sin∠bpc=sin∠pb/sin∠cpa=sin∠pc/sin∠apb。

目錄

1證明2全向量證明

證明

過a做oa⊥平面bpc于o。過o分別做om⊥bp于m與on⊥pc于n。連結(jié)am、an。 顯然,∠pb=∠amo,sin∠pb=ao/am;∠pc=∠ano,sin∠pc=ao/an。 另外,sin∠cpa=an/ap,sin∠apb=am/ap。 則sin∠pb/sin∠cpa=ao×ap/(am×an)=sin∠pc/sin∠apb。 同理可證sin∠pa/sin∠bpc=sin∠pb/sin∠cpa。即可得證三面角正弦定理。

全向量證明

如圖1,△abc為銳角三角形,過點a作單位向量j垂直于向量ac,則j與向量ab的夾角為90°-a,j與向量cb的夾角為90°-c

由圖1,ac+cb=ab(向量符號打不出)

在向量等式兩邊同乘向量j,得·

j·ac+cb=j·ab

∴│j││ac│cos90°+│j││cb│cos(90°-c)

=│j││ab│cos(90°-a)

∴asinc=csina

∴a/sina=c/sinc

同理,過點c作與向量cb垂直的單位向量j,可得

c/sinc=b/sinb

∴a/sina=b/sinb=c/sinc

2步驟1

記向量i ,使i垂直于ac于c,△abc三邊ab,bc,ca為向量a,b,c

∴a+b+c=0

則i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(c-90))+b·0+c·cos(90-a)

=-asinc+csina=0

接著得到正弦定理

其他

步驟2.

在銳角△abc中,設(shè)bc=a,ac=b,ab=c。作ch⊥ab垂足為點h

ch=a·sinb

ch=b·sina

∴a·sinb=b·sina

得到a/sina=b/sinb

同理,在△abc中,

b/sinb=c/sinc

步驟3.

證明a/sina=b/sinb=c/sinc=2r:

任意三角形abc,作abc的外接圓o.

作直徑bd交⊙o于d. 連接da.

因為直徑所對的圓周角是直角,所以∠dab=90度

因為同弧所對的圓周角相等,所以∠d等于∠c.

所以c/sinc=c/sind=bd=2r

類似可證其余兩個等式。

3

用向量叉乘表示面積則 s = cb 叉乘 ca = ac 叉乘 ab

=> absinc = bcsina (這部可以直接出來哈哈,不過為了符合向量的做法)

=> a/sina = c/sinc

2011-7-18 17:16 jinren92 | 三級

記向量i ,使i垂直于ac于c,△abc三邊ab,bc,接著得到正弦定理 其他步驟2. 在銳角△abc中,證明a/sina=b/sinb=c/sinc=2r: 任意三角形abc,

4