高一數(shù)學必修二教案5篇

時間:2023-04-08 作者:pUssy 備課教案

為了減少在課堂上出錯的可能,提前制定教案是非常有必要的,教案是教師為了提高上課質(zhì)量預(yù)先起草的文字材料,范文社小編今天就為您帶來了高一數(shù)學必修二教案5篇,相信一定會對你有所幫助。

高一數(shù)學必修二教案5篇

高一數(shù)學必修二教案篇1

教學目標

1.使學生了解奇偶性的概念,回會利用定義判定簡單函數(shù)的奇偶性。

2.在奇偶性概念形成過程中,培養(yǎng)學生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和非凡到一般的思想方法。

3.在學生感受數(shù)學美的同時,激發(fā)學習的愛好,培養(yǎng)學生樂于求索的精神。

教學重點,難點

重點是奇偶性概念的形成與函數(shù)奇偶性的判定

難點是對概念的熟悉

教學用具

投影儀,計算機

教學方法

引導發(fā)現(xiàn)法

教學過程

一.引入新課

前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個性質(zhì)。從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì)。

對稱我們大家都很熟悉,在生活中有很多對稱,在數(shù)學中也能發(fā)現(xiàn)很多對稱的問題,大家回憶一下在我們所學的內(nèi)容中,非凡是函數(shù)中有沒有對稱問題呢?

(學生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導學生把函數(shù)具體化,如和等。)

結(jié)合圖象提出這些對稱是我們在初中研究的關(guān)于軸對稱和關(guān)于原點對稱問題,而我們還曾研究過關(guān)于軸對稱的問題,你們舉的例子中還沒有這樣的,能舉出一個函數(shù)圖象關(guān)于軸對稱的嗎?

學生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱。最終提出我們今天將重點研究圖象關(guān)于軸對稱和關(guān)于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律。

二.講解新課

2.函數(shù)的奇偶性(板書)

教師從剛才的圖象中選出,用計算機打出,指出這是關(guān)于軸對稱的圖象,然后問學生初中是怎樣判定圖象關(guān)于軸對稱呢?(由學生回答,是利用圖象的翻折后重合來判定)此時教師明確提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律?

學生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導學生先把它們具體化,再用數(shù)學符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立。最后讓學生用完整的語言給出定義,不準確的地方教師予以提示或調(diào)整。

(1)偶函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù)。(板書)

(給出定義后可讓學生舉幾個例子,如等以檢驗一下對概念的初步熟悉)

提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學生觀察研究)

學生可類比剛才的方法,很快得出結(jié)論,再讓學生給出奇函數(shù)的定義。

(2)奇函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù)。(板書)

(由于在定義形成時已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)

例1。判定下列函數(shù)的奇偶性(板書)

(1);(2);

(3);;

(5);(6)。

(要求學生口答,選出12個題說過程)

解:(1)是奇函數(shù)。(2)是偶函數(shù)。

(3),是偶函數(shù)。

前三個題做完,教師做一次小結(jié),判定奇偶性,只需驗證與之間的關(guān)系,但對你們的回答我不滿足,因為題目要求是判定奇偶性而你們只回答了一半,另一半沒有作答,以第(1)為例,說明怎樣解決它不是偶函數(shù)的問題呢?

學生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數(shù)。(從這個問題的解決中讓學生再次熟悉到定義中任意性的重要)

從(4)題開始,學生的答案會有不同,可以讓學生先討論,教師再做評述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗,當時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。

教師由此引導學生,通過剛才這個題目,你發(fā)現(xiàn)在判定中需要注重些什么?(若學生發(fā)現(xiàn)不了定義域的特征,教師可再從定義啟發(fā),在定義域中有1,就必有1,有2,就必有2,有,就必有,有就必有,從而發(fā)現(xiàn)定義域應(yīng)關(guān)于原點對稱,再提出定義域關(guān)于原點對稱是函數(shù)具有奇偶性的什么條件?

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論。

(3)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要但不充分條件。(板書)

由學生小結(jié)判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明。

經(jīng)學生思考,可找到函數(shù)。然后繼續(xù)提問:是不是具備這樣性質(zhì)的函數(shù)的解析式都只能寫成這樣呢?能證實嗎?

例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書)(試由學生來完成)

證實:既是奇函數(shù)也是偶函數(shù),=,且,= ,即證后,教師請學生記住結(jié)論的同時,追問這樣的函數(shù)應(yīng)有多少個呢?學生開始可能認為只有一個,經(jīng)教師提示可發(fā)現(xiàn),只是解析式的特征,若改變函數(shù)的定義域,如,,,,它們顯然是不同的函數(shù),但它們都是既是奇函數(shù)也是偶函數(shù)。由上可知函數(shù)按其是否具有奇偶性可分為四類

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)

例3。判定下列函數(shù)的奇偶性(板書)

(1);(2);(3)。

由學生回答,不完整之處教師補充。

解:(1)當時,為奇函數(shù),當時,既不是奇函數(shù)也不是偶函數(shù)。

(2)當時,既是奇函數(shù)也是偶函數(shù),當時,是偶函數(shù)。

(3)當時,于是,

當時,,于是=,

綜上是奇函數(shù)。

教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可。

三. 小結(jié)

1.奇偶性的概念

2.判定中注重的問題

四.作業(yè)略

五.板書設(shè)計

2.函數(shù)的奇偶性例1.例3.

(1)偶函數(shù)定義

(2)奇函數(shù)定義

(3)定義域關(guān)于原點對稱是函數(shù)例2。 小結(jié)

具備奇偶性的必要條件

(4)函數(shù)按奇偶性分類分四類

探究活動

(1)定義域為的任意函數(shù)都可以表示成一個奇函數(shù)和一個偶函數(shù)的和,你能試證實之嗎?

(2)判定函數(shù)在上的單調(diào)性,并加以證實。

在此基礎(chǔ)上試利用這個函數(shù)的單調(diào)性解決下面的問題:

高一數(shù)學必修二教案篇2

教材:邏輯聯(lián)結(jié)詞(1)

目的:要求學生了解復合命題的意義,并能指出一個復合命題是有哪些簡單命題與邏輯聯(lián)結(jié)詞,并能由簡單命題構(gòu)成含有邏輯聯(lián)結(jié)詞的復合命題。

過程:

一、提出課題:簡單邏輯、邏輯聯(lián)結(jié)詞

二、命題的概念:例:125 ① 3是12的約數(shù) ② 0.5是整數(shù) ③

定義:可以判斷真假的語句叫命題。正確的叫真命題,錯誤的叫假命題。

如:①②是真命題,③是假命題

反例:3是12的約數(shù)嗎? x5 都不是命題

不涉及真假(問題) 無法判斷真假

上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。

三、復合命題:

1.定義:由簡單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復合命題。

2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

(2)菱形的對角線互相 菱形的對角線互相垂直且菱形的

垂直且平分⑤ 對角線互相平分

(3)0.5非整數(shù)⑥ 非0.5是整數(shù)

觀察:形成概念:簡單命題在加上或且非這些邏輯聯(lián)結(jié)詞成復合命題。

3.其實,有些概念前面已遇到過

如:或:不等式 x2x60的解集 { x | x2或x3 }

且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

四、復合命題的構(gòu)成形式

如果用 p, q, r, s表示命題,則復合命題的形式接觸過的有以下三種:

即: p或q (如 ④) 記作 pq

p且q (如 ⑤) 記作 pq

非p (命題的否定) (如 ⑥) 記作 p

小結(jié):1.命題 2.復合命題 3.復合命題的構(gòu)成形式

高一數(shù)學必修二教案篇3

1.點的位置表示:

(1)先取一個點o作為基準點,稱為原點.取定這個基準點之后,任何一個點p的位置就由o到p的向量 唯一表示. 稱為點p的位置向量,它表示的是點p相對于點o的位置.

(2)在平面上取定兩個相互垂直的單位向量e1,e2作為基,則 可唯一地分解為 =xe1+ye2的形式,其中x,y是一對實數(shù).(x,y)就是向量 的坐標,坐標唯一 地表示了向量 ,從而也唯一地表示了點p.

2.向量的坐標:

向量的坐標等于它的終點坐標減去起點坐標.

3.基本公式:

(1)前提條件:a(x1,y1),b(x2,y2)為平面直角坐標系中的兩點,m(x,y)為線段ab的中點.

(2)公式:

①兩點之間的距離公式|ab|=(x2-x1)2+(y2-y1)2.

②中點坐標公式

4.定比分點坐標

設(shè)a,b是兩個不同的點,如果點p在直線ab上且 =λ ,則稱λ為點p分有向線段 所成的比.

注意:當p在線段ab之間時, , 方向相同,比值λ>0.我們也允許點p在線段ab之外,此時 , 方向相反,比值λ

定比分點坐標公式:已知兩點a(x1,y1),b(x2,y2),點p(x,y)分 所成的比為λ.則x=x1+λx21+λ,y=y1+λy21+λ.

重心的坐標:三角形重心的坐標等于三個頂點相應(yīng)坐標的算術(shù)平 均值,即x1+x2+x33,y1+y2+y33.

一、中點坐標公式的運用

?例1】已知 abcd的兩個頂點坐標分別為a(4,2),b(5,7),對角線的交點為e(-3,4),求另外兩個頂點c,d的坐標.

平行四邊形的對角線互相平分,交點為兩個相對頂點的中點,利用中點公式求.

解:設(shè)c(x1,y1),d(x2,y2).

∵e為ac的中點,

∴-3=x1+42,4=y1+22.

解得x1=-10,y1=6.

又∵e為bd的中點,

∴-3=5+x22,4=7+y22.

解得x2=-11,y2=1.

∴c的坐標為(-10,6),d點的坐標為(-11,1).

若m(x,y)是a(a,b)與b(c,d)的中點,則x=a+c2,y=b+d2.也可理解為a關(guān)于m的對稱點為b,若求b,則可用變形公式c=2x-a,d=2y-b.

1-1已知矩形abcd的兩個頂點坐標是a(-1,3),b(-2,4),若它的對角線交點m在x軸上,求另外兩個頂點c,d的坐標.

解:如圖,設(shè)點m,c,d的坐標分別為(x0,0),(x1,y1),(x2,y2),依題意得

0=y1+32 y1=-3;

0=y2+42 y2=-4;

x0=x1-12 x1=2x0+1;

x0=x2-22 x2=2x0+2.

又∵|ab|2+|bc|2=|ac|2,

∴(-1+2)2+(3-4)2+(-2-2x0-1)2+(4+3)2=(-1-2x0-1)2+(3+3)2.

整理得x0=-5,∴x1=-9,x2=-8

∴點c,d的坐標分別為(-9,-3),(-8,-4).

二、距離公式的運用

?例2】已知△abc三個頂點的坐標分別為a(4,1),b(-3,2),c(0,5),則△abc的周長為().

a.42 b.82 c.122 d.162

利用兩點間的距離公式直接求解,然后求和.

解析:∵ a(4,1),b(-3,2),c(0,5),

∴|ab|=(-3-4)2+(2-1)2=50=52,

|bc|=[0-(-3)]2+(5-2)2=18=32,

| ac|=(0-4)2+(5-1)2=32=42.

∴△abc的周長為|ab|+|bc|+|ac|

=52+32+42

=122.

答案:c

(1)熟練掌握兩點 間的距離公式,并能靈活運 用.

(2)注意公式的結(jié)構(gòu)特征.若y2=y1,|ab|=(x2-x1)2=|x2-x1|就是數(shù)軸上的兩點間距離公式.

高一數(shù)學必修二教案篇4

教學目標

1、了解函數(shù)的單調(diào)性和奇偶性的概念,把握有關(guān)證實和判定的基本方法。

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。

(2)能從數(shù)和形兩個角度熟悉單調(diào)性和奇偶性。

(3)能借助圖象判定一些函數(shù)的單調(diào)性,能利用定義證實某些函數(shù)的單調(diào)性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程。

2、通過函數(shù)單調(diào)性的證實,提高學生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從非凡到一般的數(shù)學思想。

3、通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學生對數(shù)學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹?shù)难芯繎B(tài)度。

教學建議

一、知識結(jié)構(gòu)

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)。減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。

(2)函數(shù)奇偶性的概念。包括奇函數(shù)。偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)。偶函數(shù)的圖像。

二、重點難點分析

(1)本節(jié)教學的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學的難點是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實。

(2)函數(shù)的單調(diào)性這一性質(zhì)學生在初中所學函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調(diào)性的證實是學生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學生在代數(shù)論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數(shù)證實,也沒有意識到它的重要性,所以單調(diào)性的證實自然就是教學中的難點。

三、教法建議

(1)函數(shù)單調(diào)性概念引入時,可以先從學生熟悉的一次函數(shù),二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導學生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學語言表示出來。在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。

(2)函數(shù)單調(diào)性證實的`步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標為選題的標準,以便幫助學生總結(jié)規(guī)律。函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學生把看到的用數(shù)學表達式寫出來。經(jīng)歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數(shù)多個等式,是個恒等式。關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。

高一數(shù)學必修二教案篇5

教學目標

1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應(yīng)用.

(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.

(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.

2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力.

3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性.

教材分析

(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學領(lǐng)域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎(chǔ).

(2)本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學的重點.

(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點.

教法建議

(1)對數(shù)函數(shù)在引入時,就應(yīng)從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).