教案在起草的過程中,我們務必要強調講授內容要點,通過寫教案,很多人都可以提高自己的教學質量,范文社小編今天就為您帶來了六年級人教版數學教案優(yōu)秀6篇,相信一定會對你有所幫助。
六年級人教版數學教案篇1
課前準備
教師準備 ppt課件
教學過程
⊙提問導入
1.提問激趣。
根據“甲是乙的”,你能想到什么?
預設
生1:乙是甲的。
生2:甲比乙少,乙比甲多。
生3:甲是甲、乙之差的5倍。
生4:甲是甲、乙之和的。
生5:乙比甲多20%。
……
2.導入新課。
這節(jié)課我們復習用分數和百分數的知識解決問題。[板書課題:解決問題(二)]
⊙回顧與整理
1.分數(百分數)的一般應用題。
(1)分數(百分數)乘法應用題的特征及解題關鍵各是什么?
①特征:已知單位“1”的量和分率,求與分率所對應的實際數量。
②解題關鍵:準確判斷單位“1”的量。找準所求問題對應的分率,然后根據一個數乘分數的意義正確列式。
(2)分數(百分數)除法應用題的特征及解題關鍵各是什么?
①特征:已知一個數和另一個數,求一個數是另一個數的幾分之幾或百分之幾?!耙粋€數”是比較量,“另一個數”是標準量。求分率或百分率,就是求它們的倍數關系。
②解題關鍵:從問題入手,理清把誰看作標準量,也就是把誰看作單位“1”,誰和單位“1”的量作比較,誰就是被除數。
(3)分數(百分數)應用題的常見題型有哪些?如何解答?
①求甲是乙的幾分之幾(百分之幾):甲÷乙。
②求甲比乙多(少)幾分之幾:(甲-乙)÷乙或(乙-甲)÷乙。
③已知甲比乙多(少)幾分之幾,求甲:乙×。
④已知甲比乙多(少)幾分之幾,求乙:甲÷。
⑤求百分率。
發(fā)芽率=×100%
小麥的出粉率=×100%
產品的合格率=×100%
出勤率=×100%
⑥求利息:利息=本金×利率×時間
2.分數應用題的特例——工程問題。
(1)什么是工程問題?
明確:工程問題是探討工作總量、工作效率和工作時間三個數量之間相互關系的一種應用題。
(2)解決工程問題的關鍵是什么?
明確:把工作總量看作單位“1”,工作效率就是工作時間的倒數,然后根據題目的具體情況靈活運用公式解題。
(3)工程問題的數量關系式有哪些?
預設
生1:工作總量=工作效率×工作時間
生2:工作效率=工作總量÷工作時間
生3:工作時間=工作總量÷工作效率
生4:合作時間=工作總量÷工作效率和
六年級人教版數學教案篇2
教學內容:
例5體現了找規(guī)律對解決問題的重要性。這里的規(guī)律的一般化表述是:以平面上幾個點為端點,可以連多少條線段。這種以幾何形態(tài)顯現的問題,便于學生動手操作,通過畫圖,由簡到繁,發(fā)現規(guī)律。解決這類問題的常用策略是,由最簡單的情況入手,找出規(guī)律,以簡馭繁。這也是數學問題解決比較常用的策略之一。
例6以選送節(jié)目為題材,討論怎樣分兩步找出組合數,再求選送方案的總數。這里滲透了作為排列組合基礎之一的乘法原理。
例7是一個比較復雜的邏輯推理問題,借助列表,則比較容易逐步縮小范圍,找到答案。這里滲透了邏輯推理的常用方法排除法。
教學目標:
1.通過學生觀察、探索,使學生掌握數線段的方法。
2.滲透化難為易的數學思想方法,能運用一定規(guī)律解決較復雜的數學問題。
3.培養(yǎng)學生歸納推理探索規(guī)律的能力。
重點難點:
引導學生發(fā)現規(guī)律,找到數線段的方法
教具學具:
多媒體課件
教學指導:
1.出示例5前,可以先讓學生說說幾年來每一學期的數學廣角學了些什么。 探索例5時,應當先讓學生理解問題。可以通過讀題、說題意,使學生明白每兩點之間都能連一條線段。然后讓學生自己動手在紙上畫畫、試試,再來討論有沒有什么好方法
2.探究例6時,可以直接給出題目,由學生自己嘗試,也可以將例題分解,讓學生先回答
3.探究例7時,必須先讓學生仔細讀題,理解題意。
教學過程:
一、復習回顧,游戲設疑,激趣導入。
1.師:同學們,課前我們來做一個游戲吧,請你們拿出紙和筆在紙上任意點上8個點,并將它們每兩點連成一條線,再數一數,看看連成了多少條線段。(課件出現下圖,之后學生操作)
2.師:同學們,有結果了嗎?(學生表示:太亂了,都數昏了)大家別著急,今天,我們就一起來用數學的思考方法去研究這個問題。(板書課題)
新知學習
二、逐層探究,發(fā)現規(guī)律。
1.從簡到繁,動態(tài)演示,經歷連線過程。
六年級人教版數學教案篇3
教學內容:
教科書p23-26的內容,p24做一做,完成練習四的第1、2題。
教學目標:
1、認識圓錐,圓錐的高和側面,掌握圓錐的特征,會看圓錐的平面圖,會正確測量圓錐的高,能根據實驗材料正確制作圓錐。
2、過動手制作圓錐和測量圓錐的高,培養(yǎng)學生的動手操作能力和一定的空間想象能力。
3、養(yǎng)學生的自主探索意識,激發(fā)學生強烈的求知欲望。
教學重點:
掌握圓錐的特征。
教學難點:
正確理解圓錐的組成。
教具準備:
每人一個圓錐,師準備一個大的圓錐模型。
教學過程:
一、復習
1、圓柱體積的計算公式是什么?
2、圓柱的特征是什么?
二、新課
1、圓錐的認識 (直觀感受觀察討論匯報)
(1)讓學生拿著圓錐模型觀察和擺弄后,指定幾名學生說出自己觀察的結果,從而使學生認識到圓錐有一個曲面,一個頂點和一個面是圓的,等等。
(2)圓錐有一個頂點,它的底面是一個圓、(在圖上標出頂點,底面及其圓心o)
(3)圓錐有一個曲面,圓錐的這個曲面叫做側面。(在圖上標出側面)
(4)讓學生看著教具,指出:從圓錐的頂點到底面圓心的距離叫做高。 (沿著曲面上的線都不是圓錐的高,由于圓錐只有一個頂點,所以圓錐只有一條高)
2、小結
圓錐的特征(可以啟發(fā)學生總結),強調底面和高的特點,使學生弄清圓錐的特征是:底面是圓,側面是一個曲面,有一個頂點和一條高.
3、測量圓錐的高(組織學生分組進行測量)
由于圓錐的高在它的內部,我們不能直接量出它的長度,這就需要借助一塊平板來測量。
(1)先把圓錐的底面放平;
(2)用一塊平板水平地放在圓錐的頂點上面;
(3)豎直地量出平板和底面之間的距離。
4、教學圓錐側面的展開圖
(1)學生猜想圓錐的側面展開后會是什么圖形呢?
(2)實驗來得出圓錐的側面展開后是一個扇形。
三、課堂練習
1、做第24頁做一做的題目。
讓學生拿出課前準備好的模型紙樣,先做成圓錐,然后讓學生試著獨立量出它的底面直徑.教師行間巡視,對有困難的學生及時輔導。
2、練習四的第1題。
(1)讓學生自由地觀察,只要是接近于圓柱、圓錐的都可以指出。
(2)讓學生說說自己周圍還有哪些物體是由圓柱、圓錐組成的。
3.完成練習四的第2題。
補充習題
1出示一組圖形,辨認指出哪些是圓錐。
2出示一組圖形,指出哪個是圓錐的高。
3出示一組組合圖形,指出是由哪些圖形組成的。
四、總結
關于圓錐你知道了些什么?你能向同學介紹你手中的圓錐嗎?
教學反思:
觀察、感知中認識并掌握圓錐的特點,經歷探究測量圓錐高的方法的過程,加深了對圓錐高的認識。在旋轉,對比圓柱和圓錐的過程中,加深對圓錐特點的認識,發(fā)展學生的思維。
六年級人教版數學教案篇4
教材分析
本節(jié)內容是學生學習了長方體與正方體的表面積后,在充分理解了圓柱的認識的基礎上開展的.教材中選用了許多來自現實生活中的問題,通過學生想象和動手操作,使學生進一步理解圓柱的側面展開是一個長方形或一個正方形,底面是兩個圓的基礎上,掌握圓柱的表面積的求法,獲得求“圓柱體表面積”的算法。
學情分析
由于每個學生的學習水平有差異,在學習中可能會出現部分學生不知道圓柱側面轉化成學過的平面圖形;或是有的同學已經知道怎么求圓柱的側面積,但不能結合操作清晰地表述圓柱側面積計算方法的推導過程。教師可以引導學生在上節(jié)課的基礎上學習本節(jié)課,讓學生通過動手操作,小組討論得出圓柱的表面積的求法,及在生活中的應用。
教學目標
知識目標:理解圓柱體表面積的含義及求法。 能力目標:通過小組合作、獨立操作推導并掌握求圓柱的表面積的方法,并能解決實際問題。
情感目標:體驗成功的收獲,體會小組合作探索成功過程的喜悅。
教學重點和難點
重點:教師引導,動手操作得出求圓柱表面積的方法。
難點:計算方法在生活中的應用。
教學過程
一、復習導入:
1、圓柱由幾個面組成?上下兩個面是什么?側面展開是什么圖形?
2、圓面積怎樣求?
3、長方形的面積呢?
二、創(chuàng)設情境,引起興趣:
出示一頂廚師帽,讓學生觀察,做著一定帽需要多少布料?用我們以前學的知識能解決嗎?教師借機引出課題并板書課題《圓柱表面積的求法》
三、 自主探究,發(fā)現問題。
1、分組,討論:
(1)、動手將圓柱的側面沿著高剪開 。(你發(fā)現了什么?)
圓柱的側面剪開發(fā)現側面是一個長方形(正方形),
側面積=長方形的面積=長×寬=地面周長×高。
重點感受:圓柱體側面如果沿著高展開是一個長方形。(這里要強調沿著高剪)這個長方形與圓柱體的哪個面有什么關系?(長方形的長是圓柱體底面周長、長方形的寬是圓柱體的高)
(2)、復習引導:(用舊解新)
上下兩個圓的面積怎樣求?(如果已知底面半徑就能求出底面積)
(3)、小結:小組討論,將公式延伸。
圓柱表面積 = 圓柱的側面積+底面積×2
=ch+2π r2
=πdh+2π r2
2、知識的運用:(回到情景創(chuàng)設)
(1)、出示例題:
例2:假如一頂廚師的帽子,高 28厘米,帽頂半徑10厘米,做一頂帽子至少需要多少面料?( 用進一法結果保留正是整十平方厘米)
(2)、獨立試做:
(3)、集體講評。
(4)、講解進一法。
3.鞏固練習:
四、課堂總結:
這一節(jié)課重點學習了圓柱表面積的計算方法及運用。
六年級人教版數學教案篇5
(1)兩個質數的和是39,這兩個質數的積是( )。
分析 本題考查的是質數的意義及數的奇偶性等知識。
兩個數的和是39,說明這兩個數一個數是奇數,一個數是偶數,因為它們都是質數,所以其中的偶數只能是2,則奇數是39-2=37,37×2=74。
解答 74
(2)120的因數有( )個。
分析 求一個較小數的因數的個數一般用列舉法,但求較大數的因數的個數時,一般用分解質因數法,即先把120分解質因數:120=2×2×2×3×5,然后借助每個因數的個數來計算。因數2的個數是3個,因數3的個數是1個,因數5的個數也是1個,120的因數的個數為(3+1)×(1+1)×(1+1)=16(個)。
解答 16
⊙探究活動
1.課件出示題目。
(1)一個長方體木塊,長2.7 m,寬1.8 m,高1.5 m。要把它切成大小相等的正方體木塊,不許有剩余,正方體的棱長最大是多少分米?
(2)學校六年級有若干名同學排隊做操,3人一行余2人,7人一行余2人,11人一行也余2人。六年級最少有多少人?
2.明確探究要求。(小組合作、思考、交流)
(1)這兩道題分別考查什么知識?
(2)怎樣解決這兩個問題?
(3)具體的解答過程是怎樣的?
3.匯報。
(1)先匯報前兩個問題。
預設
生1:第(1)題考查的是應用因數的知識解決問題的能力。
生2:第(2)題考查的是應用倍數的知識解決問題的能力。
生3:根據題意,正方體的最大棱長應該是長方體長、寬、高的最大公因數,所以先把相關長度轉換單位,用整數表示,然后求長、寬、高的最大公因數。
生4:根據題意,六年級人數比3、7、11的最小公倍數多2,所以先求出3、7、11的最小公倍數,再加2就可以了。
(2)嘗試解答。(關注學生求三個數的最大公因數或最小公倍數的情況,發(fā)現問題并及時點撥)
(3)匯報解答過程。(指名板演,集體訂正)
預設
生1:2.7 m=27 dm,1.8 m=18 dm,1.5 m=15 dm。因為27、18、15的最大公因數是3,所以正方體的棱長最大是3 dm。
生2:因為3、7、11的最小公倍數是3×7×11=231,231+2=233(人),所以六年級最少有233人。
4.小結。
解答此類問題,關鍵要弄清考查的是因數的知識還是倍數的知識,同時要會求兩個或三個數的最大公因數及最小公倍數。
⊙課堂總結
通過本節(jié)課的學習,掌握了因數與倍數的相關知識,我們學會應用這些知識解決實際問題,學以致用。
⊙布置作業(yè)
教材75頁5、9題。
板書設計
因數、倍數、質數、合數
因數和倍數質數——質因數合數——分解質因數1公因數互質數最大公因數倍數——公倍數——最小公倍數能被2、5、3整除的數的特征。
六年級人教版數學教案篇6
教學內容:
比較正數和負數的大小。
教學目的:
1、借助數軸初步學會比較正數、0和負數之間的大小。
2、初步體會數軸上數的順序,完成對數的結構的初步構建。
教學重、難點:
負數與負數的比較。
教學過程:
一、復習:
1、讀數,指出哪些是正數,哪些是負數?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
二、新授:
(一)教學例3:
1、怎樣在數軸上表示數?(1、2、3、4、5、6、7)
2、出示例3:
(1)提問你能在一條直線上表示他們運動后的情況嗎?
(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數對應起來。
(4)學生回答,教師在相應點的下方標出對應的數,再讓學生說說直線上其他幾個點代表的數,讓學生對數軸上的點表示的正負數形成相對完整的認識。
(5)總結:我們可以像這樣在直線上表示出正數、0和負數,像這樣的直線我們叫數軸。
(6)引導學生觀察:
a、從0起往右依次是?從0起往左依次是?你發(fā)現什么規(guī)律?
b、在數軸上除了可以表示整數外,還可以表示分數和小數。請學生在數軸上分別找到1.5和-1.5對應的點。如果從起點分別到1.5和-1.5處,應如何運動?
(7)練習:做一做的第1、2題。
(二)教學例4:
1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數軸上表示出來,并比較他們的大小。
2、學生交流比較的方法。
3、通過小精靈的話,引出利用數軸比較數的大小規(guī)定:在數軸上,從左到右的順序就是數從小到大的順序。
4、再讓學生進行比較,利用學生的具體比較來說明“-8在-6的左邊,所以-8〈-6”
5、再通過讓另一學生比較“8〉6,但是-8〈-6”,使學生初步體會兩負數比較大小時,絕對值大的負數反而小。
6、總結:負數比0小,所有的負數都在0的左邊,也就是負數都比0小,而正數比0大,負數比正數小。
7、練習:做一做第3題。
三、鞏固練習
1、練習一第4、5題。
2、練習一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是 攝氏度。
四、全課總結
(1)在數軸上,從左到右的順序就是數從小到大的順序。
(2)負數比0小,正數比0大,負數比正數小。
第二課教學反思:
許多教師認為“負數”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握??扇绻钊脬@研教材,其實會發(fā)現還有不少值得挖掘的內容可以向學生補充介紹。
例3——兩個不同層面的拓展:
1、在數軸上表示數要求的拓展。
數軸除了可以表示整數,還可以表示小數和分數。教材例3只表示出正、負整數,最后一個自然段要求學生表示出—1.5。建議此處教師補充要求學生表示出“+1.5”的位置,因為這樣便于對比發(fā)現兩個數離原點的距離相等,只不過分別在0的左右兩端,滲透+1.5和—1.5絕對值相等。
同時,還應補充在數軸上表示分數,如—1/3、—3/2等,提升學生數形結合能力,為例4的教學打下夯實的基礎。
2、滲透負數加減法
教材中所呈現的數軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決1;2+1;(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數大小比較的三種類型(正數和負數、0和負數、負數和負數)
例4教材只提出一個大的問題“比較它們的大小”,這些數的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數軸從左到右的順序就是數從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
無論哪種比較方法,最終都可回歸到“數軸上左邊的數比右邊的數小?!奔词褂袑W生在比較—8和—6大小時是用“8>6,所以—8。