如果沒有寫教學反思的意識,那我們的教學水平是很難得到提升的,教學反思通過總結(jié)和反思,有利于提高自己的教學成績,下面是范文社小編為您分享的解方程1教學反思通用5篇,感謝您的參閱。
解方程1教學反思篇1
教材的設計打破了傳統(tǒng)的教學方法,在以前人教版教材中,學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關系,然后利用關系來求出方程中的未知數(shù),《解方程(二)》教學反思。而北師大版教材則是借用天平游戲使學生首先感悟“等式”,知道“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學會解方程,還能使之與中學的移項解方程建立起聯(lián)系。
原來教學由于我個人比較偏好于傳統(tǒng)的教學方法,在教學的過程中沒有特別強調(diào)“等式”與由等式引申出來的規(guī)律,從而也就影響了學生沒能很好地理解等式的性質(zhì),所以大部分的學生在解方程的時候,還是運用了加、減法各部分間的關系來計算,只有極個別的學生懂得運用等式的性質(zhì)來解決問題。在這次實驗教學的過程中,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學生更好的理解解方程的過程是一個等式的恒等變形,教學反思《《解方程(二)》教學反思》。并能站在“學生是學習的主人”和“教師是學習的組織者、引導者與合作者”的這一角度上,為學生創(chuàng)設學習此課的情境,提供動手操作、實踐以及小組合作、討論的機會。在教學的整個過程中,重點突出了“等式”與“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。
盡管如此,仍然存在著許多不足,比如:在驗證猜想時,應從一個一個具體的等式抽象到未知的等式,學生容易接受,而我是直接用抽象的等式驗證的,學生不太容易接受。還有在解方程時,算理講得不太清楚,學生在解方程時,有部分學困生學起來有困難。
在今后的教學中,一定要吃透教材,認真鉆研教材,才能上出優(yōu)質(zhì)課。
解方程1教學反思篇2
今天早上在庫溝小學聽了張福華老師的《簡易方程的整理和復習》這節(jié)復習課。這是我第一次聽復習課,以往只是從教學策略上了解復習課的教學流程,當今天真真正正的傾聽了一節(jié)復習課后,感受頗深,所學甚多,只奈何有言吐不出,下面就簡單說一些聽完這節(jié)課的體會。
首先,張老師的語言簡練干脆,善于利用名言名句。
在課的開始,大屏幕上就展示出了俄國烏申斯基的一句話:“裝著一些片段的,沒有聯(lián)系的知識的頭腦,就像一個亂七八糟的倉庫,主人從那里是什么也找不出來的。”這句話的展示,讓學生一下子就了解了整理的重要性,也了解了這節(jié)課的目的所在。在回顧整理,構建網(wǎng)絡這一環(huán)節(jié),張老師在讓學生自己看課本例題的知識點時又說了一句“不動筆墨不讀書”,提醒了學生看例題時可以適時的進行批畫,將遺忘的知識點突出顯示出來。在課的最后又課件展示了韋達和愛因斯坦的名言警句。
其次,目錄歸納知識點,清楚明了。
我想所有的老師都會頭疼復習某一單元或某一冊課本時知識點的歸納,只奈何沒有更好的方法可以把所有知識點系統(tǒng)的展現(xiàn)給學生。本節(jié)課張老師的方法讓我眼前一亮,目錄展示法,讓所有知識點的區(qū)別和聯(lián)系清楚的擺了出來,方便了學生的回顧和整理。
最后,練習充實有趣,層次分明。
闖關形式的練習提高了學生的積極性,激發(fā)了學生的好勝心。在一,二,三的闖關中,依次將基礎知識點,重難點進行了練習,穩(wěn)固。學生在回答闖關的答案時,張老師經(jīng)常會問一個為什么,引導學生對知識點進行再回顧。例如,在一名學生回答bx8等于8b時,問為什么不是b8?在學生回答axa=a的平方時,問為什么不是2a?看似不經(jīng)意的詢問,卻鞏固了細微處的知識點。
當然,張老師的課還有許多值得我學習的地方。例如,創(chuàng)設了有效地復習情景,親和力強,能及時喚起回憶,將零散的知識系統(tǒng)化等等。通過這節(jié)課,讓我更清楚的了解了復習課的教學模式,對以后上好復習課有了更多的信心。
解方程1教學反思篇3
《解方程》是人教課標版小學數(shù)學五年級上冊第四單元內(nèi)容,本節(jié)課是在認識用字母表示數(shù)的基礎上進行教學的,新課程解方程教學與以往的最大不同就是,不是利用加減乘除各部分間的關系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。
我對課時安排及教學設計均做了較大調(diào)整。原訂計劃是第一課時完成“方程的解”及“解方程”概念教學,要求學生掌握方程檢驗的書寫格式,第二課時完成加、減、乘、除各類型方程解法的教學。調(diào)整后的教案改為第一課時完成“方程的解”及“解方程”概念教學、會解形如x±a=b的方程,掌握檢驗的格式;第二課時只完成乘除法方程的解法。我上的是第一課時,其次對于教學設計也做了相應處理,將例1 改為:x+20=70,又將x-a=b形式的方程穿插學習過程之中。
為什么我會做如此改動呢?基于以下兩點原因:
1、考慮到學生一節(jié)課內(nèi)如要掌握加減乘除各種類型方程的解法、理解解方程的原理,規(guī)范書寫格式,內(nèi)容太多,怕影響教學效果。2、如果能將“解方程”與“方程的解”這兩個概念結(jié)合規(guī)范的解方程書寫過程和結(jié)果來向?qū)W生解釋,更利于學生理解掌握。總體思路如下:
1、從復習天平保持平衡的道理入手,引出課題,引導學習質(zhì)疑,有利于激發(fā)學生主動探究、深入學習的積極性。
2、通過自主學習、組內(nèi)交流、合作,達到培養(yǎng)學生自主、互助的精神。
3、給足夠的時間讓學生學習,讓學生發(fā)現(xiàn)。
4、多層次的練習形式,有利于學生對知識進一步的理解與掌握,并及時有效地鞏固強化概念。
5、教師始終把學生放在主體地位,為學生提供了一個自己去想去說,去回味知識掌握過程的舞臺,這樣將更有助于學生掌握正確的學習方法,總結(jié)失敗原因,發(fā)揚成功經(jīng)驗,培養(yǎng)良好的學習習慣。
6、自學思考匯報交流既有利于每個學生的自主探索,保證個性發(fā)展,也有利于教師考察學生思維的合理性和靈活性,考察學生是否能用清晰的數(shù)學語言表達自己的觀點。
在具體教學過程中,我從以下幾個方面入手:
一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。
教學中我先利用課件演示了“我說你答”的游戲讓學生回顧:天平兩端同時加上或減去同樣的重量,天平任然保持平衡,目的是讓學生直觀感受天平保持平衡原理,為學生遷移類推到方程中打基礎。然后出示例題x+20=70
二、利用 等式性質(zhì)解方程-,初步感悟它的妙用
在計算過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,通過討論:方程x+20=70中左右兩邊同時減去的`為什么是20,而不是其它數(shù)呢?讓學生明白:左邊減去20是為了使方程左邊只剩,右邊減去20是為了使方程兩邊仍然相等!不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學習活動是那么的有滋有味,進而使我很順利地就完成了本課的教學任務。
三、確保正確率,及時進行檢驗。
原來的檢驗過程需要完整地寫出左邊與右邊相等的過程,小學生在這個方面就會顯得不耐煩,在經(jīng)歷了一個詳細的檢驗過程之后,然后教給學生一個簡便的檢驗方法,學生都很興奮,積極性也很高漲,而且主動性也很好,這樣解決問題的正確率也提高了。
通過教學,發(fā)現(xiàn)學生對這種方法掌握的很好,而且很樂意用等式的性質(zhì)來解方程,但同時讓我感到了一點困惑:
從教材的編排上,整體難度下降,有意避開了,形如:a—x=b 和 a÷x=b等類型的題目。把用等式解決的方法單一化了。在實際教學中,如果用等式性質(zhì)來解就比較麻煩。很顯然這種方法存在著目前的局限性。對于好的學生來說,我們會讓他們嘗試接受——解答x在后面這類方程的解答方法,就是等號二邊同時加上x,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學生還很難掌握這樣方法。但是用減法和除法各部分之間的關系解答就比較簡單。這會不會與教材主倡導的用等式的性質(zhì)解決問題有矛盾呢?
解方程1教學反思篇4
本課為人教版第四單元教學內(nèi)容,本教材解方程方法利用了天平平衡的原理,采用了等式的性質(zhì)來教學解方程。
形如x±a=b一類的方程利用等式的基本性質(zhì)一學生很容易解決,形如ax=b與x÷a=b一類的方程,利用等式的基本性質(zhì)二學生也很容易解決。但行如a-x=b和a÷x=b此類的方程,學生就無從下手了,如果利用等式的基本性質(zhì)解,方程變形的過程及算理解釋比較麻煩。解決問題時當需要列出形如a-x=b或a÷x=b的方程時,我就要求學生根據(jù)實際問題的數(shù)量關系,列成形如x+b=a或bx=a的方程。
但我覺得回避這兩類問題不是很好的方法,否則,我們的教學就會顯得片面和狹隘。如:一共有128人平均分成Х組,每組8人,學生們都不假思索地列出了128÷x=8,但是利用等式的基本性質(zhì)學生就不會解,但你也不能說這個方程列錯了呀。
因此我當有學生列了a-x=b或a÷x=b的方程時,我借機教了利用算術思路解方程(被減數(shù)=差+減數(shù),被除數(shù)=商__除數(shù))介紹老板教材的解方程的方法?;A好的孩子就容易接受新的方法,而基礎差的孩子就還是無法解答此類問題。
另外教材要求,在學生用等式基本性質(zhì)解方程時,方程的變形過程應該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實際操作中,帶來了書寫上的繁瑣。因為用等式基本性質(zhì)解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復雜的方程,其解的過程就顯得太繁瑣了。
看來教材利用等式的基本性質(zhì)來解簡易方程也是存在著一些問題,不知各位老師有什么好的方法來解決這些問題呢?請不吝賜教!
解方程1教學反思篇5
開學兩周了,經(jīng)過開學后的適應,教學工作已經(jīng)逐步進入了正常軌道。其實說是適應,只是我的適應,孩子們并沒有表現(xiàn)出所謂的"開學綜合征",開學近兩周他們都表現(xiàn)得很棒!本來剛開學,擔心孩子們收不回心來,一直布置很少的一點家庭作業(yè),甚至有時候只是布置預習而已。當然,這樣做也許也確實讓孩子們能逐漸進入學習狀態(tài),避免出現(xiàn)開學倦怠或反感情緒。
在知識方面,原來擔心孩子們對方程會有不適應或抵制情緒,結(jié)果孩子們都表現(xiàn)不錯。方程解法的繁瑣并沒有讓孩子們感到厭倦,因為雖說解方程書寫步驟較多,但規(guī)律明顯,順向思維不需要過多的思維過程,抓住關鍵詞列方程就迎刃而解了。最近主要的問題是形如12-x=5或56÷x=14這樣的方程,用等式的性質(zhì)來解很別扭,而用傳統(tǒng)的方法又怕孩子混淆。其實這個問題教材在設計時早有考慮,原則上這種類型的方程不做要求,因此課本上并沒有出現(xiàn)這樣的題目。但孩子們在解決問題時自己會列出這樣的方程,只好臨時先提醒孩子盡量避免列出x在減數(shù)或除數(shù)位置上的方程。這樣做的目的并不是要刻意回避這種問題,而是考慮到孩子們對現(xiàn)在的方法還不夠熟練,不宜教給他們另外一種全然不同的解法,這個問題且等孩子們熟練掌握了解方程的方法后再說吧!反正教材是不要求做這種題的。
還有個問題就是在解決問題時,算術方法與列方程的選擇。最近一直在學習列方程解應用題,所以孩子們想當然地每道題都列方程解答。教材上雖然有一道題目是指導孩子體驗理解用算術方法與方程方法解決問題的區(qū)別,能直接套用公式或順向思維列式的就直接用算術方法解決比較簡捷,用逆向思維考慮的問題可以用方程解決比較簡捷。可能是由于初學,或者因為沒有養(yǎng)成認真分析數(shù)量關系的習慣,孩子們在這方面還比較困惑,需要在以后的教學中指導孩子們逐步理解和掌握。慢慢來,不要急。