教案在起草的時候,教師一定要強調(diào)文字表述規(guī)范,教案在教學工作中有著相輔相成的作用,范文社小編今天就為您帶來了蒙氏三角形盒教案7篇,相信一定會對你有所幫助。
蒙氏三角形盒教案篇1
教學目標:
1、讓學生親自動手,通過量、剪、拼等活動,發(fā)現(xiàn)并證實三角形的內(nèi)角和是180°,應用三角形內(nèi)角和的知識解決實際問題。
2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識,探索精神和實踐能力。
重點、難點:
經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成,發(fā)展和應用的全過程。
三角形內(nèi)角和是180°的探索和驗證。
教學過程:
一、揭示課題
1、今天我們一起來學習三角形的內(nèi)角和,那什么是三角形的內(nèi)角和?(三角形里面的角),它有幾個內(nèi)角?(三個)出示紙片,那什么又是三角形的內(nèi)角和呢?(把三角形的三個角的度數(shù)加起來就是三角形的內(nèi)角和)
出示課件
2、提出問題,為后面做鋪墊。
現(xiàn)在有3個三角形(出示課件),直角三角形說:“我是直角三角形,我的內(nèi)角和最大”鈍角三角形說:“我有一個鈍角,比你們?nèi)齻€角都大,所以我的內(nèi)角和才是最大的。銳角三角形說:“我雖然是銳角三角形,但我的個頭最大,所以我的內(nèi)角和才是最大的。
孩子們,它們這樣吵起來可不是辦法呀!你們可知道它們誰的內(nèi)角和最大呢?那我們就一起來證明給他們看。
二、新授
1、任意畫不同的類型的三角形,算一算三個內(nèi)角和是多少度。我們就畫三個不同類型的三角形,算一算三個內(nèi)角和是多少度,我們有三大組,為了節(jié)約時間,每一大組畫一種又分幾小組,三人一小組,一人畫,一人量,一人記錄。(小組合作,畫圖,量角,記錄,計算)
指名匯報結果并板書(至少一種一個板書),有不同意見的舉手,相差1、2度很正常,量角會有誤差(你們完成的又快又好,因此可見小組合作很到位)
師出示一個大直角三角板,請大家算一算這個三角板的內(nèi)角和是多少?
(三角形的內(nèi)角和都是一樣大的,都是180°,僅僅一個實驗還不能讓它們心服口服,下面我們再來做兩個實驗,讓它們心服口服)
1、拼一拼,折一折
孩子們,我們又活動起來吧,拼一拼折一折,讓它們看一看,拿出你們準備好的三角形。我們一起來:拿出一個三角形(不管形狀),撕下三個角,然后拼在一起(注意三個角的頂點要在同一個點上)你們發(fā)現(xiàn)了什么?(拼成了一個平角,這一點就是平角的頂點)
我們再拿出一個三角形,折一折(注意科學的嚴謹性,折的時候不留很寬的縫隙)你又發(fā)現(xiàn)了什么?(這個三角形還是組成了一個平角)
通過這三次實驗,我們可以得出結論:三角形的內(nèi)角和等于180°,不分形狀,不分大小,任何一個三角形的內(nèi)角和都是180°
此時,這三個三角形還爭吵嗎?它們都心服口服了。
孩子們,你們真了不起,輕而易舉就平息了一場爭吵?,F(xiàn)在你能不能利用所學知識解決一些問題呢?
三、練習
1、搶答游戲(答對的給你的那一小組加一分)
①
這個三角形的內(nèi)角和是多少度。
②
把這個三角形平均分成兩個小三角形,每個小三角形是多少度。
③
這個小三角形再分成一大一小兩個三角形,這個三角形的內(nèi)角和分別是多少度?
④
三個小三角形拼成一個更大的三角形,它的內(nèi)角和是多少度?
2、智慧角
3、判斷(用手語表示)(哪個小組同學全部舉手,就由哪個小組回答,口說手劃答對加一分)
4、知識擴展
其實三角形的內(nèi)角和是一個小朋友發(fā)現(xiàn)并提出來的,當時他只有12歲,比你們大一點點,真了不起,你們想知道他是誰嗎?(帕斯卡)
出示課件
孩子們,其實你們跟他們同樣聰明,以后,我們就利用所學知識去發(fā)現(xiàn)探索新的知識和規(guī)律,只要努力,就一定會成功的,孩子們加油吧!
四、總結
任何一個三角形不分大小,不分形狀,它們的內(nèi)角和都是180°
蒙氏三角形盒教案篇2
教材分析
教材的小標題為“探索與發(fā)現(xiàn)”,說明這部分內(nèi)容要求學生自主探索,并發(fā)現(xiàn)有關三角形內(nèi)角和性質(zhì)。
教材創(chuàng)設了一個有趣的問題情境,以此激發(fā)學生的興趣,引出探索活動。首先,教師應使學生明確“內(nèi)角”的意義,然后引導學生探索三角形內(nèi)角和等于多少。大多數(shù)學生會想到用測量角的方法,此時就可以安排小組活動。每組同學可以畫出大小、形狀不同的若干個三角形,分別量出三個內(nèi)角的度數(shù),并求出它們的和,填寫在教材提供的表中。最后發(fā)現(xiàn),大小、形狀不同的三角形,每一個三角形內(nèi)角和都在180°左右。
三角形的內(nèi)角和是否正好等于180°呢?教材中安排了兩個活動:一是把三角形三個內(nèi)角撕下來,再拼在一起,組成一個平角,因此三角形內(nèi)角和是180°。二是把三個內(nèi)角折疊在一起,發(fā)現(xiàn)也能組成一個平角。每個活動都要使學生動手試一試,加深對三角形內(nèi)角和的認識,體驗三角形內(nèi)角和性質(zhì)的探索過程。
另外,教材還從兩個方面引導學生應用三角形的內(nèi)角和:一是根據(jù)三角形中已知的兩個角的度數(shù),求另一個角的度數(shù);二是直角三角形里的兩個銳角和等于90°,鈍角三角形里的兩個銳角和小于90°。
學情分析
學生在前面的學習中已經(jīng)認識了三角形的基本特征及分類,并且在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個角的度數(shù),知道了平角是180°;學生通過前幾年的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣,所以在學生具備這些數(shù)學知識和能力的基礎上,來引導學生探索和發(fā)現(xiàn)三角形內(nèi)角和是180°這一性質(zhì)。
要讓學生明確一個三角形分成兩個小三角形后,每個三角形內(nèi)角和還是180°,兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和也是180°。
教學目標
1、知識目標:讓學生探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。
2、能力目標:培養(yǎng)學生動手操作和合作交流的能力,促進掌握學習數(shù)學的方法。
3、情感目標:培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數(shù)學應用數(shù)學的興趣。
教學重點和難點
教學重點:掌握三角形的內(nèi)角和是180°,會應用三角形的內(nèi)角和解決實際問題。
教學難點:讓學生經(jīng)歷探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°的過程。
教學過程:
(一)、激趣導入:
1、認識三角形內(nèi)角
我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?
(三角形是由三條線段圍成的圖形,三角形有三個角,…。)
請看屏幕(課件演示三條線段圍成三角形的過程)。
三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及它的弧線),我們把三角形里面的這三個角分別叫做三角
形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)
2、設疑激趣
現(xiàn)在有兩個三角形朋友為了一件事正在爭論,我們來幫幫它們。(播放課件)
同學們,請你們給評評理:是這樣嗎?
現(xiàn)在出現(xiàn)了兩種不同的意見,有的同學認為大三角形的內(nèi)角和大,還有部分同學認為兩個三角形的內(nèi)角和的度數(shù)都是一樣的。那么到底誰說得對呢?
這節(jié)課我們就一起來研究這個問題。(板書課題:三角形的內(nèi)角和)
(二)、動手操作,探究新知
1、探究特殊三角形的內(nèi)角和
師拿出兩個三角板,問:它們是什么三角形?
(直角三角形)
請大家拿出自己的兩個三角尺,在小組內(nèi)說說每一個三角尺上三個角的度數(shù),并求出這兩個直角三角形的內(nèi)角和。
(由于學生在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個角的度數(shù),所以能夠很快求得每塊三角尺的3個角的和都是180°)
從剛才兩個三角形內(nèi)角和的計算中,你們發(fā)現(xiàn)了什么?
(這兩個三角形的內(nèi)角和都是180°)。
這兩個三角形都是直角三角形,并且是特殊的三角形。
2、探究一般三角形內(nèi)角和
(1).猜一猜。
猜一猜其它三角形的內(nèi)角和是多少度呢?(可能是180°)
(2).操作、驗證一般三角形內(nèi)角和是180°。
所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
(可以先量出每個內(nèi)角的度數(shù),再加起來。)
測量計算,是嗎?那就請四人小組共同計算吧!
老師讓每個同學都準備了直角三角形、銳角三角形和鈍角三角形三種不同的三角形,并量出了每個內(nèi)角的度數(shù),下面就請同學們在小組內(nèi)每種各選一個求出它們的內(nèi)角和,把結果填在表中:
(3)小組匯報結果。
請各小組匯報探究結果
提問:你們發(fā)現(xiàn)了什么?
小結:通過測量計算我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°左右。
3繼續(xù)探究
(1)動手操作,驗證猜測。
沒有得到統(tǒng)一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?請同學們動腦筋想一想,能通過動手操作來驗證嗎?
(先小組討論,再匯報方法)
大家的辦法都很好,請你們小組合作,動手操作。
(2)學生操作,教師巡視指導。(3)全班交流匯報驗證方法、結果。
學生放在投影儀上展示給大家看。(剪拼、撕拼、折拼)
我們可以得出一個怎樣的結論?(三角形的內(nèi)角和是180°)
引導學生通過剪拼、撕拼和折拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角,使學生證實三角形內(nèi)角和確實是180°,測量計算有誤差。
5、辨析概念,透徹理解。
(出示一個大三角形)它的內(nèi)角和是多少度?
(出示一個很小的三角形)它的內(nèi)角和是多少度?
一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個大三角形的內(nèi)角和又是多少呢?(學生有的答360°,有的180°.)
把大三角形平均分成兩份。每個小三角形的內(nèi)角和是多少度?(生有的答90°,有的180°。)
這兩道題都有兩種答案,到底哪個對?為什么?
(學生個個臉上露出疑問。)
大家可以在小組內(nèi)用三角尺拼一拼,也可以畫一畫,互相討論。
經(jīng)過一翻激烈的討論探究后,學生發(fā)現(xiàn):三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
(三)小結
剛才同學們用很多方法證明了無論是什么樣的三角形內(nèi)角和都是180°,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。
(四)、鞏固練習,拓展應用
下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關的數(shù)學問題。(課件)
1、求三角形中一個未知角的度數(shù)。
(1)在三角形中,已知∠1=85°,∠2=65°,求∠3。
(2)在三角形中,已知∠1=98°,∠2=49°,求∠3。
2、判斷
(1)一個三角形的三個內(nèi)角度數(shù)是:90°、75°、25°。()
(2)一個三角形至少有兩個角是銳角。()
(3)鈍角三角形的內(nèi)角和比銳角三角形的內(nèi)角和大。()
(4)直角三角形的兩個銳角和等于90°。()
3、解決生活實際問題。
(1)爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是70°,它的頂角是多少度?
(2)交通警示牌“讓”為等邊三角形,求其中一個角的度數(shù)。
4、拓展練習。
利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?(課件)
小組的同學討論一下,看誰能找到最佳方法。
學生匯報,在圖中畫上虛線,教師課件演示。
請同學們自己在練習本上計算。
(四)、課堂總結
通過這節(jié)課的學習,你有哪些收獲?
蒙氏三角形盒教案篇3
1教學目標
(一)知識目標
1、使學生理解直角三角形中五個元素的關系,及什么是解直角三角形;2、會運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形.
(二)能力訓練點
1、通過綜合運用勾股定理,直角三角形的兩個銳角互余及邊角之間的關系解直角三角形,逐步培養(yǎng)學生分析問題、解決問題的能力;2通過數(shù)行結合的運用,培養(yǎng)學生添加適當輔助線的能力。
(三)情感目標
滲透數(shù)形結合的數(shù)學思想,培養(yǎng)學生學以致用的良好的學習習慣.
2學情分析
九年級學生已經(jīng)牢固掌握了勾股定理,也剛剛學習過銳角三角函數(shù),但銳角三角函數(shù)的運用不一定熟練,綜合運用所學知識解決問題,將實際問題抽象為數(shù)學問題的能力都比較差,因此要在本節(jié)課進行有意識的培養(yǎng)。
為實現(xiàn)本節(jié)既定的教學目標,根據(jù)教材特點和學生實際水平對本節(jié)教學采用的基本策略是:
①創(chuàng)設問題情境,激發(fā)學生思維的主動性。
②以實際問題為載體,結合簡單教具及多媒體提供的圖象,引導學生建立數(shù)學模型,把實際問題抽象為數(shù)學問題。
③把實際問題中提供的條件轉化為數(shù)學問題中的數(shù)量,掌握探索解決問題的思想和方法。
④課堂盡量為學生提供探索、交流的空間,發(fā)動學生既獨立又合作的愉快的學習。
由于大部分學生的閱讀分析能力相對較弱,教學中引導學生討論、交流,羅列出問題中的所有已知條件、未知條件,探索已知與未知之間的數(shù)量關系,進而結合勾股定理、三角函數(shù)關系式尋求解決的方案,從而達到解決的目的。
有效的數(shù)學學習活動,不能單純地依賴模仿與記憶。動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式。本節(jié)課的例題與練習題的已知、未知都有所不同,合理引導,利用這種“不同”讓學生在探究學習中得到提高,獲得知識,也是本節(jié)課追求的主要目標。
我打算采用“創(chuàng)設情境———自主探究———合作交流———達標訓練———反思歸納”的流程來進行本節(jié)課的教學。
3重點難點
1.重點:直角三角形的解法.
2.難點:把實際問題抽象為數(shù)學問題,建立數(shù)學模型;三角函數(shù)在解直角三角形中的靈活運用;j解直角三角形時,在已知的兩個元素中,為什么至少有一個元素是邊.
4教學過程4、1第一學時教學活動活動1【講授】教學活動
1.我們已經(jīng)掌握了rt△abc的邊角關系、三邊關系、角角關系,利用這些關系,在知道其中的兩個元素(至少有一個是邊)后,就可求出其余的元素.這樣的導語既可以使學生大概了解解直角三角形的概念,同時又可啟發(fā)引導學生思考,為什么兩個已知元素中必有一條邊呢?從而激發(fā)學生的學習、探索熱情。
2.教師在學生思考后,繼續(xù)引導“為什么兩個已知元素中至少有一條邊?”讓全體學生的思維目標一致,在作出準確回答后,教師讓學生概括什么是解直角三角形?(由直角三角形中除直角外的兩個已知元素,求出所有未知元素的過程,叫做解直角三角形).
3.例題評析
例1在rt△abc中,∠c為直角,ac= bc=,解這個三角形.
例2在△abc中,∠c為直角,∠a、∠b、∠c所對的邊分別為a、b、c,且b= 20 =35,解這個三角形(精確到0、1).
解直角三角形的方法很多,靈活多樣,學生完全可以自己解決,但例題具有示范作用.因此,此題在處理時,首先,應讓學生獨立完成,培養(yǎng)其分析問題、解決問題的能力,同時滲透數(shù)形結合的思想.其次,教師組織學生比較各種方法中哪些較好,選一種板演.
完成之后引導學生小結“已知一邊一角,如何解直角三角形?”
答:先求另外一角,然后選取恰當?shù)暮瘮?shù)關系式求另兩邊.計算時,利用所求的量如不比原始數(shù)據(jù)簡便的話,最好用題中原始數(shù)據(jù)計算,這樣誤差小些,也比較可靠,防止第一步錯導致一錯到底.
議一議
在直角三角形中,
(1)已知a,b,怎樣求∠b的度數(shù)?
(2)已知a,c,怎樣求∠b的度數(shù)?
(3)已知b,c,怎樣求∠b的度數(shù)?
你能總結一下已知兩邊解直角三角形的方法嗎?與同伴交流。
.
(三)鞏固練習
在△abc中,∠c為直角,ac=4,bc=4,解此直角三角形。課本74頁。
1、找四名學生板演,重視過程的規(guī)范性和完整性;2、學生獨立完成,教師簡評。
解直角三角形是解實際應用題的基礎,因此必須使學生熟練掌握.為此,教材配備了練習針對各種條件,使學生熟練解直角三角形,并培養(yǎng)學生運算能力.
試一試
(四)總結與擴展
引導學生小結:
1、在直角三角形中,除直角外還有五個元素,知道兩個元素(至少有一個是邊),就可以求出另三個元素.
2、解決問題要結合圖形(沒有圖形時要先畫草圖)。
蒙氏三角形盒教案篇4
【教學目標】
1、知識與技能:
(1)理解和掌握三角形的內(nèi)角和是180°。
(2)運用三角形的內(nèi)角和知識解決實際問題和拓展性問題。
2、過程與方法:
(1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。
(2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。
(3)發(fā)展學生動手操作、觀察比較和抽象概括的能力。
3、情感態(tài)度與價值觀:
讓學生體驗數(shù)學活動的探索樂趣,通過教學中的活動體會數(shù)學的轉化思想。
【教學重、難點】
教學重點:理解掌握三角形的內(nèi)角和是180°。
教學難點:運用三角形的內(nèi)角和知識解決實際問題。
【教具準備】
教學課件、各種三角形
【教學過程】
一、創(chuàng)設情景,引出問題
1、猜謎語:
形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。
(打一圖形名稱)
2、猜三角形
師:老師這有1個三角形,它的一部分被智慧星給遮住了,猜猜這是什么三角形?它里面會出現(xiàn)兩個直角嗎?為什么?
3、引出課題。
師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進數(shù)學王國,探討三角形的內(nèi)角和的奧秘。(板書課題)
二、探究新知
1、三角形的內(nèi)角和
師:三角形內(nèi)角和指的是什么?
2、猜一猜。
師:這個三角形的內(nèi)角和是多少度?
3、驗證。
讓學生用自己喜歡的方式驗證三角形的內(nèi)角和是不是180°。
4、學生匯報。
(1)測量
師:匯報的測量結果,有的是180°,有的不是180°,為什么會出現(xiàn)這種情況?有沒有別的方法驗證?
(2)剪拼
a、學生上臺演示。
b、請大家三人小組合作,用剪拼的方法驗證其它三角形。
c、師演示。
(3)折拼
師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學們看一看他是怎么折的'(課件演示)。
(4)結論:三角形的內(nèi)角和是180。
(5)數(shù)學小知識。
5、鞏固知識。
(1)解決課前問題,為什么一個三角形不可能有兩個直角?一個三角形中可以有2個鈍角嗎?
(2)把兩個小三角形拼在一起,問:大三角形的內(nèi)角和是多少度。
教師:為什么不是360°?
三、解決相關問題
師:接下來,利用三角形的內(nèi)角和我們來解決一些相關的問題吧!
1、看圖,求未知角的度數(shù)。
2、判斷。
3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?
求出下面三角形各角的度數(shù)。
(1)我三邊相等。
(2)我是等腰三角形,我的頂角是96°。
(3)我有一個銳角是40°。
4、求四邊形、五邊形內(nèi)角和。
四、總結。
師:這節(jié)課你有什么收獲?
五、板書設計:(略)
蒙氏三角形盒教案篇5
【設計理念】
新課標重視讓學生經(jīng)歷數(shù)學知識的形成過程,要求教師創(chuàng)設有效的問題情境激發(fā)學生的參與欲望,提供足夠的時間和空間讓學生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數(shù)學問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。
【教材內(nèi)容】
新人教版義務課程標準實驗教科書四年級下冊數(shù)學第67頁例6、“做一做”及練習十六的第1、2、3題。
【教材分析】
三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。
【學情分析】
1、在學習本課時,學生已經(jīng)有了探索三角形內(nèi)角和的知識基礎:知道直角和平角的度數(shù),會用量角器度量角的度數(shù);認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。
2、已經(jīng)有一部分學生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。
【教學目標】
1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。
2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。
3.在參與數(shù)學學習活動的過程中,獲得成功的體驗,感受數(shù)學探究的嚴謹與樂趣。
【教學重點】
探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。
?教學難點】
驗證“三角形的內(nèi)角和是180°”。
【教(學)具準備】
多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。
【教學步驟】
一、復習舊知 引出課題
1、你已經(jīng)知道有關三角形的哪些知識?
2、出示課題:三角形的內(nèi)角和
?設計意圖:也自然導入新課?!?/p>
二、提出問題 引發(fā)猜想
1、提出問題:看到這個課題,你有什么問題想問的?
預設:(1)三角形的內(nèi)角指的是哪些角? (2)三角形的內(nèi)角和是什么意思?
(3)三角形的內(nèi)角一共是多少度?
2、引發(fā)猜想
猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?
?設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的內(nèi)容,無疑激發(fā)了學生的學習興趣,培養(yǎng)了學生的問題意識。由于學生在平時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊?!?/p>
三、操作驗證 形成結論
1、交流驗證方法:
(1)用什么方法證明三角形的內(nèi)角和是180度呢?
預設: ①量算法 ②剪拼法 ③折拼法等
(2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以代表所有的.三角形?我們的操作過程怎么分工才會做到省時又高效?
2、動手驗證
3、全班匯報交流
4、小結:剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180 °度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。
5、方法拓展
推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180 °的方法。
6、形成結論:任意三角形的內(nèi)角和是180 °。
【設計意圖:
?標準》指出:“教師應激發(fā)學生的積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗?!辈聹y后先獨立思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學生嚴謹、科學正確的研究態(tài)度,讓學生在活動中積累基本的數(shù)學活動經(jīng)驗,為后續(xù)的學習提供了經(jīng)驗支撐。】
四、應用結論 解決問題
1、鞏固新知:想一想,算一算。
2、解決問題:等腰三角形風箏的頂角是多少度?
3、辨析訓練,完善結論。
五、課堂總結,歸納研究方法
今天這節(jié)課你學到了哪些知識?你是怎樣得到這些知識的?
六、課后延伸:用今天所學的方法繼續(xù)研究四邊形的內(nèi)角和。
七、板書設計:
三角形的內(nèi)角和
猜測: 三角形的內(nèi)角和是180°?
驗證: 量 拼
結論: 任意三角形的內(nèi)角和是180°
蒙氏三角形盒教案篇6
教學內(nèi)容
義務課程標準試驗教科書《數(shù)學》(人教版)四年級下冊第85頁。
設計思路
遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一。學生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內(nèi)角的和是180°,引發(fā)學生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導學生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再利用課件演示進一步驗證,由此獲得三角形的內(nèi)角和是180°的結論。這一系列活動潛移默化地向?qū)W生滲透了“轉化”數(shù)學思想,為后繼學習奠定了必要的基礎。最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。練習形式具有趣味性,激發(fā)了學生主動解題的積極性。第一個練習從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學生是否掌握所學知識應該達到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學,第3個練習設計了開放性的練習,在小組內(nèi)完成。由一個同學出題,其它三個同學回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角。有唯一的答案。訓練多次后,只給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中消除疲倦激發(fā)興趣,拓展學生思維。兼顧到智力水平發(fā)展較快的同學。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。
教學目標
1.讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2.讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉化為平角的探究活動,向?qū)W生滲透“轉化”數(shù)學思想。
3.使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。
教材分析
三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
教學重點
讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。
教學準備
多媒體課件、學具。
教學過程
一、激趣引入
(一)認識三角形內(nèi)角
師:我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?
生1:三角形是由三條線段圍成的圖形。
生2:三角形有三個角,……
師:請看屏幕(課件演示三條線段圍成三角形的過程)。
師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)
(二)設疑,激發(fā)學生探究新知的心理
師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)
生:能。
師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
師:有誰畫出來啦?
生1:不能畫。
生2:只能畫兩個直角。
生3:只能畫長方形。
師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。
師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?
生:想。
師:那就讓我們一起來研究吧!
(揭示矛盾,巧妙引入新知的探究)
二、動手操作,探究新知
(一)研究特殊三角形的內(nèi)角和
師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)
生:90°、60°、30°。(課件演示:由三角板抽象出三角形)
師:也就是這個三角形各角的度數(shù)。它們的和怎樣?
生:是180°。
師:你是怎樣知道的?
生:90°+60°+30°=180°。
師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。
師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?
生:90°+45°+45°=180°。
師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?
生1:這兩個三角形的內(nèi)角和都是180°。
生2:這兩個三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形內(nèi)角和
1.猜一猜。
師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。
生1:180°。
生2:不一定。
……
2.操作、驗證一般三角形內(nèi)角和是180°。
(1)小組合作、進行探究。
師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
生:可以先量出每個內(nèi)角的度數(shù),再加起來。
師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!
師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)
(2)小組匯報結果。
師:請各小組匯報探究結果。
生1:180°。
生2:175°。
生3:182°。
……
(三)繼續(xù)探究
師:沒有得到統(tǒng)一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。
蒙氏三角形盒教案篇7
一、教學目標
(一)知識教學點
鞏固用三角函數(shù)有關知識解決問題,學會解決坡度問題。
(二)能力目標
逐步培養(yǎng)學生分析問題、解決問題的能力;滲透數(shù)形結合的數(shù)學思想和方法。
(三)德育目標
培養(yǎng)學生用數(shù)學的意識,滲透理論聯(lián)系實際的觀點。
二、教學重點、難點和疑點
1.重點:解決有關坡度的實際問題。
2.難點:理解坡度的有關術語。
3.疑點:對于坡度i表示成1∶m的形式學生易疏忽,教學中應著重強調(diào),引起學生的重視。
三、教學過程
1.創(chuàng)設情境,導入新課。
例 同學們,如果你是修建三峽大壩的工程師,現(xiàn)在有這樣一個問題請你解決:如圖
水庫大壩的橫斷面是梯形,壩頂寬6m,壩高23m,斜坡ab的坡度i 1∶3,斜坡cd的坡度i=1∶2.5,求斜坡ab的坡面角α,壩底寬ad和斜坡ab的長(精確到0.1m)。
同學們因為你稱他們?yōu)楣こ處煻湴粒瑵M腔熱情,但一見問題又手足失措,因為連題中的術語坡度、坡角等他們都不清楚。這時,教師應根據(jù)學生想學的心情,及時點撥。
通過前面例題的教學,學生已基本了解解實際應用題的方法,會將實際問題抽象為幾何問題加以解決。但此題中提到的坡度與坡角的概念對學生來說比較生疏,同時這兩個概念在實際生產(chǎn)、生活中又有十分重要的應用,因此本節(jié)課關鍵是使學生理解坡度與坡角的意義。