提前制定一份教案是為了讓我們更好的開展教學(xué)工作,提前制定好適合自己的教案是可以讓我們?cè)谡n堂上更加自信的,以下是范文社小編精心為您推薦的3.2解一元一次方程一教案5篇,供大家參考。
3.2解一元一次方程一教案篇1
教學(xué)目標(biāo):
知識(shí)與技能:
認(rèn)識(shí)常見的幾何圖形,并能用自己的語(yǔ)言描述常見幾何圖形的特征
過程與方法:
1.經(jīng)歷從現(xiàn)實(shí)世界中抽象幾何圖形的過程,通過對(duì)比,概括出幾何研究的對(duì)象
2.在實(shí)物與幾何圖形之間建立對(duì)應(yīng)關(guān)系,在復(fù)習(xí)小學(xué)學(xué)過的平面圖形的基礎(chǔ)上,建立幾何圖形的概念,發(fā)展空間觀念
情感態(tài)度價(jià)值觀:
體驗(yàn)數(shù)學(xué)學(xué)習(xí)的樂趣,提高數(shù)學(xué)應(yīng)用意識(shí)。
教學(xué)重點(diǎn):
通過觀察,討論,思考和實(shí)踐等活動(dòng),讓學(xué)生會(huì)辨識(shí)幾何體
教學(xué)難點(diǎn):
從具體實(shí)物中抽象出幾何體的概念
教學(xué)方法:
探究式
教學(xué)用具:
幾何模型、實(shí)物、多媒體
教學(xué)過程設(shè)計(jì):
一、觀察與思考
師:1.呈現(xiàn)生活中的一些物體:水杯、書、鉛筆、筆筒、乒乓球、蘋果、跳棋、冰激凌筒。2.由老師課前準(zhǔn)備或當(dāng)堂演示一些圖片
提問:這些物體中哪些形狀類似但大小不一樣?
學(xué)生積極思考,踴躍發(fā)言。
引導(dǎo)學(xué)生簡(jiǎn)述自己的理由,用自己的語(yǔ)言描述這些幾何體的特征
師:大家在分類的時(shí)候有沒有考慮他們的顏色、材料、質(zhì)量?
生:沒有
師:我們的生活中有類似形狀的許多物體,而對(duì)于這些物體如果不考慮他們的顏色、材料、質(zhì)量,而只注意它們的形狀、大小和位置,就得到我們今后要學(xué)習(xí)的幾何圖形。
找出你所認(rèn)識(shí)的幾何圖形
生:圓錐、圓柱、球
師:下面讓我們一起來認(rèn)識(shí)它們,(電腦顯示上面各物體抽象出來的幾何體)配注各幾何體名稱(中、英文)。請(qǐng)同學(xué)們觀察,剛才的物體分別類似于屏幕上的哪一種幾何體?
圓柱、圓錐、正方、長(zhǎng)方體、棱柱、球
circular、cylinder、circular、cone、cube、cuboid、prism、sphere
生:思考,并作出回答
師:讓我們一起來回想一下平時(shí)的日常生活中所見到過的哪些物體的形狀類似于以上的幾何體,(在實(shí)物與幾何體模型之間建立對(duì)應(yīng)關(guān)系)。
二、做一做
師:將書上p3的圖打到屏幕上,同學(xué)們一起做,鞏固概念
三、一起探究
1.電腦演示七種幾何體,同學(xué)們說出它們的名稱
2.思考,在上述幾何體中,有哪些是我們學(xué)過的平面圖形?
學(xué)生思考一段時(shí)間后,同桌交流,將部分幾何體拆分,以達(dá)到讓學(xué)生認(rèn)識(shí)幾何圖形與平面圖形的區(qū)別的目的。
進(jìn)一步讓學(xué)生思考:
(1)立體圖形和平面圖形的區(qū)別是什么?
(2)幾何圖形分幾部分?
四、小結(jié)
同學(xué)們說說這節(jié)課的收獲是什么?
收獲:(1)初步認(rèn)識(shí)了幾何圖形,有立體圖形和平面圖形。
(2)立體圖形的分類
小編為大家提供的七年級(jí)上冊(cè)數(shù)學(xué)幾何圖形教學(xué)計(jì)劃表大家仔細(xì)閱讀了嗎?最后祝同學(xué)們學(xué)習(xí)進(jìn)步。
3.2解一元一次方程一教案篇2
解一元一次方程
(廣西大新縣雷平中學(xué) 何勇新)
第一課時(shí)
教學(xué)目的
1.了解一元一次方程的概念。
2.掌握含有括號(hào)的一元一次方程的解法。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):解含有括號(hào)的一元一次方程的解法。
2.難點(diǎn):括號(hào)前面是負(fù)號(hào)時(shí),去括號(hào)時(shí)忘記變號(hào)。
教學(xué)過程
一、復(fù)習(xí)提問
1.解下列方程:
(1)5x-2=8 (2)5+2x=4x
2.去括號(hào)法則是什么?移項(xiàng)要注意什么?
二、新授
一元一次方程的概念
如44x+64=328 3+x=(45+x) y-5=2y+l 問:它們有什么共同特征?
只含有一個(gè)未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,這樣的方程叫做一元一次方程。
例1.判斷下列哪些是一元一次方程
x= 3x-2 x-=-l
5x2-3x+1=0 2x+y=l-3y =5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
強(qiáng)調(diào)去括號(hào)時(shí)把括號(hào)外的因數(shù)分別乘以括號(hào)內(nèi)的每一項(xiàng),若括號(hào)前面是-號(hào),注意去掉括號(hào),要改變括號(hào)內(nèi)的每一項(xiàng)的符號(hào)。
補(bǔ)充:解方程3x-[3(x+1)-(1+4)]=l
說明:方程中有多重括號(hào)時(shí),一般應(yīng)按先去小括號(hào),再去中括號(hào),最后去大括號(hào)的方法去括號(hào),每去一層括號(hào)合并同類項(xiàng)一次,以簡(jiǎn)便運(yùn)算。
三、鞏固練習(xí)
教科書第9頁(yè),練習(xí),l、2、3。
四、小結(jié)
學(xué)習(xí)了一元一次方程的概念,含有括號(hào)的一元一次方程的解法。用分配律去括號(hào)時(shí),不要漏乘括號(hào)中的項(xiàng),并且不要搞錯(cuò)符號(hào)。
五、作業(yè)
1.教科書第12頁(yè)習(xí)題6.2,2第l題。
第二課時(shí)
教學(xué)目的
掌握去分母解方程的方法,體會(huì)到轉(zhuǎn)化的思想。對(duì)于求解較復(fù)雜的方程,注意培養(yǎng)學(xué)生自覺反思求解的過程和自覺檢驗(yàn)方程的解是否正確的良好習(xí)慣。
重點(diǎn)、難點(diǎn)
1、重點(diǎn):掌握去分母解方程的方法。
2、難點(diǎn):求各分母的最小公倍數(shù),去分母時(shí),有時(shí)要添括號(hào)。
教學(xué)過程
一、復(fù)習(xí)提問
1.去括號(hào)和添括號(hào)法則。
2.求幾個(gè)數(shù)的最小公倍數(shù)的方法。
二、新授
例1:解方程(見課本)
解一元一次方程有哪些步驟?
一般要通過去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),未知數(shù)的系數(shù)化為1等步驟,把一個(gè)一元一次方程轉(zhuǎn)化成x=a的形式。解題時(shí),要靈活運(yùn)用這些步驟。
補(bǔ)充例:解方程 (x+15)=- (x-7)
三、鞏固練習(xí)
教科書第10頁(yè),練習(xí)1、2。
四、小結(jié)
1.解一元一次方程有哪些步驟?
2.掌握移項(xiàng)要變號(hào),去分母時(shí),方程兩邊每一項(xiàng)都要乘各分母的最小公倍數(shù),切勿漏乘不含有分母的項(xiàng),另外分?jǐn)?shù)線有兩層意義,一方面它是除號(hào),另一方面它又代表著括號(hào),所以在去分母時(shí),應(yīng)該將分子用括號(hào)括上。
五、作業(yè)
教科書第13頁(yè)習(xí)題6.2,2第2題。
第三課時(shí)
教學(xué)目的
使學(xué)生靈活應(yīng)用解方程的一般步驟,提高綜合解題能力。
重點(diǎn)、難點(diǎn)
1、重點(diǎn):靈活應(yīng)用解題步驟。
2、難點(diǎn):在靈活二字上下功夫。
教學(xué)過程 :
一、 一、 復(fù)習(xí)
1、一元一次方程的解題步驟。
2、分?jǐn)?shù)的基本性質(zhì)。
二、新授
例1.解方程(見課本)
分析:此方程的分母是小數(shù),如果能把各分母化為整數(shù),那么就可以用前面學(xué)過的方法求解了。那么怎樣化簡(jiǎn)呢?引導(dǎo)學(xué)生分析,并求出方程的解。交流體會(huì)。
例2.解方程(見課本)
例3:已知公式v=中,v=120、d=100、∏=3.14,求n的值。(保留整數(shù))
分析:在公式中,v、d、∏都已知,只要把它們的值代入公式,就可以得到關(guān)于n的一元一次方程。
三、鞏固練習(xí)。
根據(jù)公式v=v0+at,填寫下列表中的空格。
v v0 a t
0 2 8
48 3 1
14
15 5 4
76 13 7
四、小結(jié)。
若方程的分母是小數(shù),應(yīng)先利用分?jǐn)?shù)的性質(zhì),把分子、分母同時(shí)擴(kuò)大若干倍,此時(shí)分子要作為一個(gè)整體,需要補(bǔ)上括號(hào),注意不是去分母,不能把方程其余的項(xiàng)也擴(kuò)大若干倍。
五、作業(yè) 。
教科書第13頁(yè)第3題
第四課時(shí)
教學(xué)目的:
理解一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟;并會(huì)列一元一次方程解簡(jiǎn)單應(yīng)用題。
重點(diǎn)、難點(diǎn)
1、重點(diǎn):弄清應(yīng)用題題意列出方程。
2、難點(diǎn):弄清應(yīng)用題題意列出方程。
3.2解一元一次方程一教案篇3
教學(xué)目標(biāo):
1、 使學(xué)生會(huì)列一元一次方程解有關(guān)應(yīng)用題。
2、 培養(yǎng)學(xué)生分析解決實(shí)際問題的能力。
復(fù)習(xí)引入:
1、在小學(xué)里我們學(xué)過有關(guān)工程問題的應(yīng)用題,這類應(yīng)用題中一般有工作總量、工作時(shí)間、工作效率這三個(gè)量。這三個(gè)量的關(guān)系是:
(1)__________ (2)_________ (3)_________
人們常規(guī)定工程問題中的工作總量為______。
2、由以上公式可知:一件工作,甲用a小時(shí)完成,則甲的工作量可看成________,工作時(shí)間是________,工作效率是_______。若這件工作甲用6小時(shí)完成,則甲的工作效率是_______。
講授新課:
1、例題講解:
一件工作,甲單獨(dú)做20小時(shí)完成,乙單獨(dú)做12小時(shí)完成。
問:甲乙合做,需幾小時(shí)完成這件工作?
(1)首先由一名至兩名學(xué)生閱讀題目。
(2)引導(dǎo)
Ⅰ:這道題目的已知條件是什么?
Ⅱ:這道題目要求什么問題?
Ⅲ:這道題目的相等關(guān)系是什么?
(3)由一學(xué)生口頭設(shè)出求知數(shù),并列出方程,師生共同解答;同時(shí)教師在黑板上寫出解題過程,形成板書。
2、練習(xí):
有一個(gè)蓄水池,裝有甲、乙、丙三個(gè)進(jìn)水管,單獨(dú)開甲管,6分鐘可注滿空水池;單獨(dú)開乙管,12分鐘可注滿空水池;單獨(dú)開丙管,18分鐘可注滿空水池,如果甲、乙、丙三管齊開,需幾分鐘可注滿空水池?
此題的處理方法:
Ⅰ:先由一名學(xué)生閱讀題目;
Ⅱ:然后由兩名學(xué)生板演。
3.2解一元一次方程一教案篇4
一、學(xué)生起點(diǎn)分析
學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過算術(shù)四則運(yùn)算,而初中的有理數(shù)運(yùn)算是以小學(xué)算術(shù)四則運(yùn)算為基礎(chǔ)的,不同的是有理數(shù)運(yùn)算多了一個(gè)符號(hào)問題。符號(hào)法則是有理數(shù)運(yùn)算法則的重要組成部分,也是學(xué)生學(xué)習(xí)本章知識(shí)和今后學(xué)習(xí)其他與計(jì)算有關(guān)的內(nèi)容時(shí)容易出錯(cuò)的知識(shí)點(diǎn)之一。
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在前面相關(guān)知識(shí)的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了一些數(shù)學(xué)活動(dòng),感受到了數(shù)的范圍的擴(kuò)大,能借助生活經(jīng)驗(yàn)對(duì)一些簡(jiǎn)單的實(shí)際問題進(jìn)行有理數(shù)的運(yùn)算,如計(jì)算比賽的得分,計(jì)算溫差等等。同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定數(shù)學(xué)交流的能力。
學(xué)生學(xué)習(xí)中的困難預(yù)設(shè):學(xué)生學(xué)習(xí)數(shù)學(xué)是一種認(rèn)識(shí)過程,要遵循一般的認(rèn)識(shí)規(guī)律,而七年級(jí)的學(xué)生,對(duì)異號(hào)兩數(shù)相加從未接觸過,與小學(xué)加法比較,思維強(qiáng)度增大,需要通過絕對(duì)值大小的比較來確定和的符號(hào)和加法轉(zhuǎn)化為減法兩個(gè)過程,要求學(xué)生在課堂上短時(shí)間內(nèi)完成這個(gè)認(rèn)識(shí)過程確有一定的難度,在教學(xué)時(shí)應(yīng)從實(shí)例出發(fā),充分利用教材中的正負(fù)抵消的思想,用數(shù)形結(jié)合的觀點(diǎn)加以解釋,讓學(xué)生感知法則的由來,以突破這一難點(diǎn)。
二、教學(xué)任務(wù)分析
對(duì)于有理數(shù)的運(yùn)算,首先在于運(yùn)算的意義的理解,即首先要回答為什么要進(jìn)行運(yùn)算。為此,必須讓學(xué)生通過具體的問題情境,認(rèn)識(shí)到運(yùn)算的作用,加深學(xué)生對(duì)運(yùn)算本身意義的理解,同時(shí)也讓學(xué)生體會(huì)到運(yùn)算的應(yīng)用,從而培養(yǎng)學(xué)生一定的應(yīng)用意識(shí)和能力。教科書基于學(xué)生學(xué)習(xí)了相反數(shù)和絕對(duì)值基礎(chǔ)之上,提出了本課時(shí)的具體學(xué)習(xí)任務(wù):探索有理數(shù)的加法運(yùn)算法則,進(jìn)行有理數(shù)的加法運(yùn)算。本課時(shí)的教學(xué)重點(diǎn)是有理數(shù)加法法則的探索過程,利用有理數(shù)的加法法則進(jìn)行計(jì)算,教學(xué)難點(diǎn)是異號(hào)兩數(shù)相加的法則。教學(xué)方法是“引導(dǎo)——分類——歸納”。本課時(shí)的教學(xué)目標(biāo)如下:
1.經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則;
2.能熟練進(jìn)行整數(shù)加法運(yùn)算;
3.培養(yǎng)學(xué)生的數(shù)學(xué)交流和歸納猜想的能力;
4.滲透分類、探索、歸納等思想方法,使學(xué)生了解研究數(shù)學(xué)的一些基本方法。
三、教學(xué)過程設(shè)計(jì)
本課時(shí)設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)引入,提出問題;第二環(huán)節(jié):活動(dòng)探究,猜想結(jié)論;第三環(huán)節(jié):驗(yàn)證明確結(jié)論;第四環(huán)節(jié):運(yùn)用鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):布置作業(yè)。
(一)復(fù)習(xí)引入,提出問題
活動(dòng)內(nèi)容:
1.復(fù)習(xí)提問:
(1)下列各組數(shù)中,哪一個(gè)較大?
(2)一位同學(xué)在一條東西方向的跑道上,先向東走了20米,又向西走了30米,能否確定他現(xiàn)在的位置位于出發(fā)點(diǎn)的哪個(gè)方向,與原來出發(fā)的位置相距多少米?若向東記為正,向西記為負(fù),該問題用算式表示為 。
活動(dòng)目的:我們已經(jīng)熟悉正數(shù)的運(yùn)算,然而實(shí)際問題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。這里先讓學(xué)生回顧在具體問題中感受正數(shù)和負(fù)數(shù)的加法運(yùn)算。
2.提出問題:
某班舉行知識(shí)競(jìng)賽,評(píng)分標(biāo)準(zhǔn)是:答對(duì)一題加1分,答錯(cuò)一題扣1分,不回答得0分.
如果我們用1個(gè) 表示+1,用1個(gè) ,那么 就表示0,同樣 也表示0.
(1)計(jì)算(-2)+(-3).
在方框中放進(jìn)2個(gè) 和3個(gè) :
因此,(-2)+(-3)= -5.
用類似的方法計(jì)算(2)(-3)+ 2
(3) 3 +(-2)
(4) 4+(-4)
思考: 兩個(gè)有理數(shù)相加,還有哪些不同的情形?舉例說明。
引導(dǎo)學(xué)生列舉兩個(gè)正數(shù)相加,如3 + 2,一個(gè)數(shù)和零相加,如0+(-4),4 + 0。
活動(dòng)目的:通過實(shí)際問題情境類比列出兩個(gè)有理數(shù)相加的7種不同情形,兩個(gè)正數(shù)相加、兩個(gè)負(fù)數(shù)相加,異號(hào)兩數(shù)相加(根據(jù)絕對(duì)值又可分為三類)、一個(gè)加數(shù)為0。進(jìn)而討論如何進(jìn)行一般的有理數(shù)加法的運(yùn)算。
活動(dòng)的實(shí)際效果: 實(shí)際問題情境為學(xué)生營(yíng)造了良好的學(xué)習(xí)氛圍,利于他們積極探究.
(二)活動(dòng)探究,猜想結(jié)論:
上面我們列出了兩個(gè)有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和.但是,要計(jì)算兩個(gè)有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請(qǐng)同學(xué)們仔細(xì)觀察比較這7個(gè)算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運(yùn)算法則嗎?也就是結(jié)果的符號(hào)怎么定?絕對(duì)值怎么算?
學(xué)生分組進(jìn)行活動(dòng),教師關(guān)注學(xué)生在活動(dòng)中的表現(xiàn),可以根據(jù)學(xué)生的實(shí)際情況給予適當(dāng)點(diǎn)撥和引導(dǎo),鼓勵(lì)學(xué)生大膽發(fā)表自己的意見,最后形成統(tǒng)一的認(rèn)識(shí)。
對(duì)“一起探究”,教師可引導(dǎo)學(xué)生按以下步驟思考:
1、觀察列出的具體算式,根據(jù)兩個(gè)加數(shù)的符號(hào)分類:兩個(gè)正數(shù)相加、兩個(gè)負(fù)數(shù)相加,異號(hào)兩數(shù)相加(根據(jù)絕對(duì)值又可分為三類)、一個(gè)加數(shù)為0。
2、同號(hào)兩數(shù)相加時(shí),和的符號(hào)與兩個(gè)加數(shù)的符號(hào)有怎樣的關(guān)系?和的絕對(duì)值和加數(shù)的絕對(duì)值有怎樣的關(guān)系?異號(hào)兩數(shù)相加時(shí)和的符號(hào)與兩個(gè)加數(shù)的符號(hào)有怎樣的關(guān)系?和的絕對(duì)值和加數(shù)的絕對(duì)值有怎么樣的關(guān)系?有一個(gè)加數(shù)為0時(shí),和是什么?
3、從中歸納概括出規(guī)律
在學(xué)生探究的基礎(chǔ)上,教師引出規(guī)定的加法法則。
在活動(dòng)中,盡可能讓學(xué)生獨(dú)立完成,必要時(shí)可以交流,教師只在適當(dāng)?shù)臅r(shí)候給予幫助。
同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。
異號(hào)兩數(shù)相加,絕對(duì)值值相等時(shí)和為0;絕對(duì)值不相等時(shí),取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
活動(dòng)目的:利用分組討論、分類歸納幫助學(xué)生理解加法運(yùn)算過程,同時(shí)有利于加法運(yùn)算法則的歸納。
活動(dòng)的實(shí)際效果:由于采用了圖示的教學(xué)手段,在教師的引導(dǎo)下讓學(xué)生分類觀察,發(fā)現(xiàn)規(guī)律,用自己的語(yǔ)言表達(dá)規(guī)律,最后由學(xué)生對(duì)規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出有理數(shù)的加法法則.通過實(shí)際問題情境,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識(shí)和技能的全過程。理解有理數(shù)加法法則規(guī)定的合理性,培養(yǎng)了學(xué)生的分類和歸納概括的能力。
(三)驗(yàn)證明確結(jié)論:
例1 計(jì)算下列算式的結(jié)果,并說明理由:
(1) 180 +(-10) (2) (-10)+(-1);
(3)5+(-5); (4) 0+(-2)
活動(dòng)目的:給學(xué)生提供示范,進(jìn)行有理數(shù)加法,可以按照“一觀察,二確定,三求和”的步驟進(jìn)行,一觀察是指觀察兩個(gè)加數(shù)是同號(hào)還是異號(hào),二確定是指確定“和”的符號(hào),三求和是指計(jì)算“和”的絕對(duì)值.
活動(dòng)的實(shí)際效果:通過習(xí)題,加深了學(xué)生對(duì)有理數(shù)加法法則的理解。
(四)運(yùn)用鞏固:
活動(dòng)內(nèi)容:
1. 口答下列算式的結(jié)果
(1) (+4)+(+3); (2) (-4)+(-3);
(3)(+4)+(-3); (4) (+3)+(-4);
(5)(+4)+(-4); (6) (-3)+0
(7) 0+(+2); (8) 0+0.
活動(dòng)目的:通過這組練習(xí),讓學(xué)生進(jìn)一步鞏固有理數(shù)加法的法則,達(dá)到熟練程度。
2.請(qǐng)同學(xué)們完成書上的隨堂練習(xí):
(1)(-25)+(-7); (2)(-13)+5;
(3)(-23)+0; (4)45+(-45)
全班學(xué)生書面練習(xí),四位學(xué)生板演,教師對(duì)學(xué)生板演進(jìn)行講評(píng).
活動(dòng)目的:習(xí)題的配備上,注意到學(xué)生的思維是一個(gè)循序漸進(jìn)的過程,所以由易到難,使學(xué)生在練習(xí)的過程中能夠逐步地提高能力,得到發(fā)展。
活動(dòng)的實(shí)際效果: 通過練習(xí)進(jìn)一步熟悉有理數(shù)的加法法則。通過口答、演排糾錯(cuò),活躍課堂氣氛,充分調(diào)動(dòng)學(xué)生的積極性,學(xué)生在一種比較活躍的氛圍中,解決各種(五)課堂小結(jié):
活動(dòng)內(nèi)容:師生共同總結(jié)。
1. 兩個(gè)有理數(shù)相加,“一觀察,二確定,三求和”,即首先判斷加法類型,再確定和的符號(hào),最后確定和的絕對(duì)值
2. 有理數(shù)加法法則及其應(yīng)用。
3. 注意異號(hào)的情況。
活動(dòng)目的:課堂小結(jié)并不只是課堂知識(shí)點(diǎn)的回顧,要盡量讓學(xué)生暢談自己的切身感受,教師對(duì)于發(fā)言進(jìn)行鼓勵(lì),進(jìn)一步梳理本節(jié)所學(xué),更要有所思考,達(dá)到對(duì)所學(xué)知識(shí)鞏固的目的。
活動(dòng)的實(shí)際效果: 學(xué)生對(duì)“一觀察,二確定,三求和”的步驟印象較深,達(dá)到了本節(jié)課的教學(xué)目標(biāo)。
3.2解一元一次方程一教案篇5
一、教材分析:
1、教材所處的地位和作用:
從數(shù)學(xué)科學(xué)本身看,方程是代數(shù)學(xué)的核心內(nèi)容,正是對(duì)于它的研究推動(dòng)了整個(gè)代數(shù)學(xué)的發(fā)展,從代數(shù)中關(guān)于方程的分類看,一元一次方程是最簡(jiǎn)單的代數(shù)方程,也是所有代數(shù)方程的基礎(chǔ).教科書將本節(jié)內(nèi)容安排在第一節(jié),一方面是對(duì)小學(xué)學(xué)段已經(jīng)學(xué)過的有關(guān)算術(shù)方法解題和簡(jiǎn)單方程的運(yùn)用的進(jìn)一步發(fā)展,另一方面考慮引入一元一次方程后,可以盡早滲透模型化的思想,使學(xué)生盡早接觸利用一元一次方程解決實(shí)際問題的方法.
?課程標(biāo)準(zhǔn)》對(duì)本課時(shí)的要求是通過具體實(shí)例歸納出方程及一元一次方程的概念,根據(jù)相等關(guān)系列出方程.讓學(xué)生在歸納和總結(jié)的過程中,初步建立數(shù)學(xué)模型思想,訓(xùn)練學(xué)生主動(dòng)探究的能力,能結(jié)合情境發(fā)現(xiàn)并提出問題,體會(huì)在解決問題中與他人合作的重要性,獲得解決問題的經(jīng)驗(yàn).
2、教學(xué)目標(biāo):
根據(jù)課標(biāo)的要求和本節(jié)內(nèi)容的特點(diǎn),我從知識(shí)技能、數(shù)學(xué)思考、情感價(jià)值觀三個(gè)方面確定本節(jié)課的目標(biāo):
知識(shí)技能目標(biāo)
①通過對(duì)實(shí)際問題的分析,讓學(xué)生體驗(yàn)從算術(shù)方法到代數(shù)方法是一種進(jìn)步,歸納并理解一元一次方程的概念,領(lǐng)悟一元一次方程的意義和作用.
②在學(xué)生根據(jù)問題尋找相等關(guān)系、根據(jù)相等關(guān)系列出方程的過程中,培養(yǎng)學(xué)生獲取信息、分析問題、處理問題的能力.
③使學(xué)生經(jīng)歷把實(shí)際問題抽象為數(shù)學(xué)方程的過程,認(rèn)識(shí)到方程是刻畫現(xiàn)實(shí)世界的一種有效的數(shù)學(xué)模型,初步體會(huì)建立數(shù)學(xué)模型的思想.
數(shù)學(xué)思考目標(biāo)
用字母表示未知數(shù),找出相等關(guān)系,將實(shí)際問題抽象為數(shù)學(xué)問題,通過列方程解決.
情感價(jià)值目標(biāo):
讓學(xué)生體會(huì)到從算式到方程是數(shù)學(xué)的進(jìn)步,滲透化未知為已知的重要數(shù)學(xué)思想.體驗(yàn)數(shù)學(xué)與日常生活密切相關(guān),認(rèn)識(shí)到許多實(shí)際問題可以用數(shù)學(xué)方法解決,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情.
3、重點(diǎn)、難點(diǎn):
結(jié)合以上目標(biāo),我在認(rèn)真研究教材的基礎(chǔ)上,立足學(xué)生發(fā)展的宗旨,確定了本節(jié)課的教學(xué)重難點(diǎn).
教學(xué)重點(diǎn):知道什么是方程、一元一次方程,找相等關(guān)系列方程.
教學(xué)難點(diǎn):思維習(xí)慣的轉(zhuǎn)變,分析數(shù)量關(guān)系,找相等關(guān)系。
二、教學(xué)策略:
如何突出重點(diǎn),突破難點(diǎn),從而達(dá)到教學(xué)目標(biāo)的實(shí)現(xiàn)呢?在教學(xué)過程我運(yùn)用了如下教法與手段:
1.生活引路,感知概念背景;
2.比較方法,明確意義;
3.感受過程,形成核心概念;
4.運(yùn)用新知,鞏固方法;
5.歸納總結(jié),鞏固發(fā)展.
本節(jié)課利用多媒體教學(xué)平臺(tái),從學(xué)生熟悉的實(shí)際問題開始,將實(shí)際問題“數(shù)學(xué)化”建立方程模型.采用教師引導(dǎo),學(xué)生自主探索、觀察、歸納的教學(xué)方式。
三、學(xué)情分析:
根據(jù)本節(jié)課的內(nèi)容特點(diǎn)及學(xué)生的心理特征,在學(xué)法上,極力倡導(dǎo)了新課程的自主探究、合作交流的學(xué)習(xí)方法.通過對(duì)學(xué)生原有知識(shí)水平的分析,創(chuàng)設(shè)情境,使數(shù)學(xué)回到生活,鼓勵(lì)學(xué)生思考,探索情境中的所包含的數(shù)量關(guān)系,學(xué)生在經(jīng)歷“建立方程模型”這一數(shù)學(xué)化的過程后,理解學(xué)習(xí)方程和一元一次方程的意義,培養(yǎng)學(xué)生抽象概括等能力.
四、教學(xué)過程:
本節(jié)課的教學(xué)過程我設(shè)計(jì)了以下六個(gè)環(huán)節(jié):
(一) 情景引入
采用教材中的情景
在這個(gè)環(huán)節(jié)中我提出了三個(gè)問題:
問題1:從上圖中你能獲得哪些信息?
問題2:你會(huì)用算術(shù)方法求嗎?
問題3:你會(huì)用方程的方法解決這個(gè)問題嗎?
(二)學(xué)習(xí)新知
在這個(gè)環(huán)節(jié)中,我首先提出一個(gè)問題:“如果設(shè)中山市到深圳市的路程為·千米,怎樣用式子表示中山市與東莞市的距離以及中山市與惠州市的距離?”,這樣,學(xué)生就會(huì)主動(dòng)結(jié)合圖形,根據(jù)在《整式的加減》中學(xué)到的知識(shí)解決問題.
通過上述思考過程,學(xué)生已經(jīng)初步了解到尋找已知量與未知量之間存在的相等關(guān)系是利用方程解決實(shí)際問題的關(guān)鍵所在.
然后我結(jié)合上面的過程簡(jiǎn)單歸納列方程解決實(shí)際問題的步驟并給出方程的概念.
解決實(shí)際問題的步驟:(1)用字母表示問題中的未知數(shù);(2)根據(jù)問題中的相等關(guān)系,列出方程.(17世紀(jì)的法國(guó)數(shù)學(xué)家迪卡爾最早使用·,y,z等字母表示未知數(shù),而我國(guó)古代則用“天元、地元、人元、物元”等表示未知數(shù),而且要比西方早1000多年,這說明我們中華民族是一個(gè)充滿智慧和才干的偉大民族.)
在這里我介紹了字母表示未知數(shù)的文化背景,其目的就是在文化層面上讓學(xué)生進(jìn)一步理解數(shù)學(xué)、喜愛數(shù)學(xué),展示數(shù)學(xué)的文化魅力,這正是培養(yǎng)學(xué)生情感價(jià)值觀的體現(xiàn).
方程的概念:含有未知數(shù)的等式叫方程.小學(xué)里已經(jīng)給出了方程的概念,這里可適當(dāng)處理.
在這里我開始向?qū)W生滲透列方程解決實(shí)際問題的思考程序.
(三)討論交流
討論1:比較列算式和列方程兩種方法的特點(diǎn).
列算式:只用已知數(shù),表示計(jì)算程序,依據(jù)是間題中的數(shù)量關(guān)系;
列方程:可用未知數(shù),表示相等關(guān)系,依據(jù)是問題中的等量關(guān)系。
通過討論,學(xué)生體會(huì)到了:用算術(shù)方法解題時(shí),列出的算式只能用已知數(shù),而列方程時(shí),方程中既含有已知數(shù),又含有用字母表示的未知數(shù),這就是說,在方程中未知數(shù)(字母)可以和已知數(shù)一起表示問題中的數(shù)量關(guān)系.
而且隨著學(xué)習(xí)的深入,學(xué)生會(huì)逐步體會(huì)到從算式到方程是數(shù)學(xué)的進(jìn)步。
緊接著的思考讓全班學(xué)生參與學(xué)習(xí)的過程,從而進(jìn)一步地拓寬了學(xué)生的思維.
討論2:對(duì)于上面的問題,你還能列出其他方程嗎?如果能,你依據(jù)的是哪個(gè)相等關(guān)系?
在這個(gè)討論活動(dòng)中,我采取了先小組合作交流后全班交流.
通過交流后,學(xué)生中出現(xiàn)如下結(jié)果:
從學(xué)生的分析所得,這兩種設(shè)未知數(shù)的方法就是在以后學(xué)習(xí)中將遇到的直接設(shè)元和間接設(shè)元兩種設(shè)元.
要求出路程,只要解出方程中的·即可,我們?cè)谝院髱坠?jié)課中再來學(xué)習(xí).
在這個(gè)環(huán)節(jié)里,問題的開放有利于培養(yǎng)學(xué)生的發(fā)散思維。這樣安排的目的是使所有的學(xué)生都有獨(dú)立思考的時(shí)間和合作交流的時(shí)間。
(四)初步應(yīng)用
學(xué)生在小學(xué)已經(jīng)學(xué)過簡(jiǎn)易方程,通過以下的例題和練習(xí)可以回顧已經(jīng)學(xué)過的知識(shí),并為一元一次方程提供素材。
1、例題:根據(jù)下列問題,設(shè)未知數(shù)并列出方程:
(1)用一根長(zhǎng)24㎝的鐵絲圍成一個(gè)正方形,正方形的邊長(zhǎng)是多少?
(2)一臺(tái)計(jì)算機(jī)已使用1700小時(shí),預(yù)計(jì)每月再使用150小時(shí),經(jīng)過多少月這臺(tái)計(jì)算機(jī)的使用時(shí)間達(dá)到規(guī)定的檢修時(shí)間2450小時(shí)?
(3)某校女生占全體學(xué)生數(shù)的52%,比男生多80人,這個(gè)學(xué)校有多少學(xué)生?
2、課堂練習(xí):這一組例題和課堂練習(xí)的設(shè)置,其目的是讓學(xué)生更進(jìn)一步加強(qiáng)列方程解決實(shí)際問題的能力。
(五)再探新知
提取例題和練習(xí)中出現(xiàn)的方程請(qǐng)學(xué)生觀察方程它們有什么共同的特點(diǎn)?然后達(dá)成共識(shí):只含有一個(gè)未知數(shù);未知數(shù)的次數(shù)是1.
在這個(gè)環(huán)節(jié)中,我引導(dǎo)學(xué)生觀察方程特點(diǎn),給出一元一次方程的概念
教師總結(jié):只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,這樣的方程叫做一元一次方程.
思考:下列式子中,哪些是一元一次方程?通過思考辨析,使學(xué)生鞏固一元一次方程的概念,把握住概念的本質(zhì).
(六)課堂小結(jié)
讓學(xué)生先歸納,然后教師補(bǔ)充方式進(jìn)行,主要圍繞以下問題:
本節(jié)課學(xué)習(xí)了哪些主要內(nèi)容?一元一次方程的三個(gè)特征是什么?從實(shí)際問題中列出方程的步驟及關(guān)鍵是什么?
五、課堂設(shè)計(jì)理念
本節(jié)課著力體現(xiàn)以下幾個(gè)方面:
1、突出問題的應(yīng)用意識(shí)。在各個(gè)環(huán)節(jié)的安排上都設(shè)計(jì)成一個(gè)個(gè)問題,使學(xué)生能圍繞問題展開討思考、討論,進(jìn)行學(xué)習(xí)。
2、體現(xiàn)學(xué)生的主體意識(shí)。讓學(xué)生通過列算式與列方程的比較,分別歸納出它們的特點(diǎn),從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過合作交流,得出問題的不同解法;讓學(xué)生對(duì)一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點(diǎn)等進(jìn)行歸納。
3、體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問題,然后再引導(dǎo)學(xué)生列出含未知數(shù)的式了,尋找相等關(guān)系列出方程,在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學(xué)生思維的層次性。
4、滲透建模思想。把實(shí)際問題中的數(shù)量關(guān)系用方程形式表示出來,就是建立一種數(shù)學(xué)模型,教師有意識(shí)地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實(shí)際問題抽象出方程模型的能力。