10的分解教案5篇

時(shí)間:2022-10-05 作者:Gourmand 備課教案

教案是教師為了順利開展教學(xué)提早起草的教學(xué)文書,眾所周知,要想新學(xué)期的教學(xué)工作圓滿完成,一定少不了要準(zhǔn)備一份教案,以下是范文社小編精心為您推薦的10的分解教案5篇,供大家參考。

10的分解教案5篇

10的分解教案篇1

(一)學(xué)習(xí)目標(biāo)

1、會(huì)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法

2、會(huì)用因式分解解簡(jiǎn)單的方程

(二)學(xué)習(xí)重難點(diǎn)重點(diǎn):因式分解在多項(xiàng)式除法和解方程中兩方面的應(yīng)用。

難點(diǎn):應(yīng)用因式分解解方程涉及到的較多的推理過程是本節(jié)課的難點(diǎn)。

(三)教學(xué)過程設(shè)計(jì)

看一看

1.應(yīng)用因式分解進(jìn)行多項(xiàng)式除法.多項(xiàng)式除以多項(xiàng)式的一般步驟:

①________________②__________

2.應(yīng)用因式分解解簡(jiǎn)單的一元二次方程.

依據(jù)__________,一般步驟:__________

做一做

1.計(jì)算:

(1)(-a2b2+16)÷(4-ab);

(2)(18x2-12xy+2y2)÷(3x-y).

2.解下列方程:

(1)3x2+5x=0;

(2)9x2=(x-2)2;

(3)x2-x+=0.

3.完成課后練習(xí)題

想一想

你還有哪些地方不是很懂?請(qǐng)寫出來。

____________________________________

(四)預(yù)習(xí)檢測(cè)

1.計(jì)算:

2.先請(qǐng)同學(xué)們思考、討論以下問題:

(1)如果a×5=0,那么a的值

(2)如果a×0=0,那么a的值

(3)如果ab=0,下列結(jié)論中哪個(gè)正確( )

①a、b同時(shí)都為零,即a=0,

且b=0;

②a、b中至少有一個(gè)為零,即a=0,或b=0;

(五)應(yīng)用探究

1.解下列方程

2.化簡(jiǎn)求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值

(六)拓展提高:

解方程:

1、(x2+4)2-16x2=0

2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?

(七)堂堂清練習(xí)

1.計(jì)算

2.解下列方程

①7x2+2x=0

②x2+2x+1=0

③x2=(2x-5)2

④x2+3x=4x

10的分解教案篇2

教學(xué)目標(biāo):

1、進(jìn)一步鞏固因式分解的概念;

2、鞏固因式分解常用的三種方法

3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解

4、應(yīng)用因式分解來解決一些實(shí)際問題

5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣

教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問題

教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒?,拓展練?xí)2、3

教學(xué)過程:

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值

利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識(shí)回顧

1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

(1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

(3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

(5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

(7).2πr+2πr=2π(r+r) 因式分解

2、.規(guī)律總結(jié)(教師講解): 分解因式與整式乘法是互逆過程.

分解因式要注意以下幾點(diǎn): (1).分解的對(duì)象必須是多項(xiàng)式.

(2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式. (3).要分解到不能分解為止.

3、因式分解的方法

提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

4、強(qiáng)化訓(xùn)練

試一試把下列各式因式分解:

(1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

(3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

三、例題講解

例1、分解因式

(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

(3) (4)y2+y+例2、分解因式

1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

例3、分解因式

1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

三、知識(shí)應(yīng)用

1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

四、拓展應(yīng)用

1.計(jì)算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

2、20042+2004被2005整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

10的分解教案篇3

教學(xué)設(shè)計(jì)思想:

本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運(yùn)用公式進(jìn)行多項(xiàng)式的.因式分解。第一課時(shí)的內(nèi)容是用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解,首先提出新問題:x2-4與y2-25怎樣進(jìn)行因式分解,讓學(xué)生自主探索,通過整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學(xué)生的逆向思維和推理能力,然后讓學(xué)生獨(dú)立去做例題、練習(xí)中的題目,并對(duì)結(jié)果通過展示、解釋、相互點(diǎn)評(píng),達(dá)到能較好的運(yùn)用平方差公式進(jìn)行因式分解的目的。第二課時(shí)利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì)。

教學(xué)目標(biāo)

知識(shí)與技能:

會(huì)用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解;

會(huì)用完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

能夠綜合運(yùn)用提公因式法、平方差公式、完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

提高全面地觀察問題、分析問題和逆向思維的能力。

過程與方法:

經(jīng)歷用公式法分解因式的探索過程,進(jìn)一步體會(huì)這兩個(gè)公式在因式分解和整式乘法中的不同方向,加深對(duì)整式乘法和因式分解這兩個(gè)相反變形的認(rèn)識(shí),體會(huì)從正逆兩方面認(rèn)識(shí)和研究事物的方法。

情感態(tài)度價(jià)值觀:

通過學(xué)習(xí)進(jìn)一步理解數(shù)學(xué)知識(shí)間有著密切的聯(lián)系。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):①運(yùn)用平方差公式分解因式;②運(yùn)用完全平方式分解因式。

難點(diǎn):①靈活運(yùn)用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運(yùn)用完全平方公式分解因式

關(guān)鍵:把握住因式分解的基本思路,觀察多項(xiàng)式的特征,靈活地運(yùn)用換元和劃歸思想。

10的分解教案篇4

教學(xué)目標(biāo)

教學(xué)知識(shí)點(diǎn)

使學(xué)生了解因式分解的好處,明白它與整式乘法在整式變形過程中的相反關(guān)系。

潛力訓(xùn)練要求。

透過觀察,發(fā)現(xiàn)分解因式與整式乘法的關(guān)系,培養(yǎng)學(xué)生觀察潛力和語言概括潛力。

情感與價(jià)值觀要求。

透過觀察,推導(dǎo)分解因式與整式乘法的關(guān)系,讓學(xué)生了解事物間的因果聯(lián)系。

教學(xué)重點(diǎn)

1、理解因式分解的好處。

2、識(shí)別分解因式與整式乘法的關(guān)系。

教學(xué)難點(diǎn)透過觀察,歸納分解因式與整式乘法的關(guān)系。

教學(xué)方法觀察討論法

教學(xué)過程

Ⅰ、創(chuàng)設(shè)問題情境,引入新課

導(dǎo)入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)

Ⅱ、講授新課

1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。

993-99=99×98×100

2、議一議

你能嘗試把a(bǔ)3-a化成n個(gè)整式的乘積的形式嗎?與同伴交流。

3、做一做

(1)計(jì)算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;

③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________

(2)根據(jù)上面的算式填空:

①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();

④y2-6y+9=()2。⑤a3-a=()()。

定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式分解因式。

4。想一想

由a(a+1)(a-1)得到a3-a的變形是什么運(yùn)算?由a3-a得到a(a+1)(a-1)的變形與這種運(yùn)算有什么不同?你還能舉一些類似的例子加以說明嗎?

下面我們一齊來總結(jié)一下。

如:m(a+b+c)=ma+mb+mc(1)

ma+mb+mc=m(a+b+c)(2)

5、整式乘法與分解因式的聯(lián)系和區(qū)別

ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。

6。例題下列各式從左到右的變形,哪些是因式分解?

(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);

(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。

Ⅲ、課堂練習(xí)

p40隨堂練習(xí)

Ⅳ、課時(shí)小結(jié)

本節(jié)課學(xué)習(xí)了因式分解的好處,即把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式;還學(xué)習(xí)了整式乘法與分解因式的關(guān)系是相反方向的變形。

10的分解教案篇5

第6.4因式分解的簡(jiǎn)單應(yīng)用

背景材料:

因式分解是初中數(shù)學(xué)中的一個(gè)重點(diǎn)內(nèi)容,也是一項(xiàng)重要的基本技能和基礎(chǔ)知識(shí),更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學(xué)問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計(jì)算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡(jiǎn)單應(yīng)用。

教材分析:

本節(jié)課是本章的最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會(huì)到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機(jī)會(huì)體驗(yàn)主動(dòng)學(xué)習(xí)和探索的“過程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問題解決的經(jīng)驗(yàn)。

教學(xué)目標(biāo):

1、在整除的情況下,會(huì)應(yīng)用因式分解,進(jìn)行多項(xiàng)式相除。

2、會(huì)應(yīng)用因式分解解簡(jiǎn)單的一元二次方程。

3、體驗(yàn)數(shù)學(xué)問題中的'矛盾轉(zhuǎn)化思想。

4、培養(yǎng)觀察和動(dòng)手能力,自主探索與合作交流能力。

教學(xué)重點(diǎn):

學(xué)會(huì)應(yīng)用因式分解進(jìn)行多項(xiàng)式除法和解簡(jiǎn)單一元二次方程。

教學(xué)難點(diǎn):

應(yīng)用因式分解解簡(jiǎn)單的一元二次方程。

設(shè)計(jì)理念:

根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

教學(xué)過程:

一、創(chuàng)設(shè)情境,復(fù)習(xí)提問

1、將正式各式因式分解

(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y

(3)2 a2b-8a2b (4)4x2-9

[四位同學(xué)到黑板上演板,本課時(shí)用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項(xiàng)式除法運(yùn)算作鋪墊]

教師訂正

提出問題:怎樣計(jì)算(2 a2b-8a2b)÷(4a-b)

二、導(dǎo)入新課,探索新知

(先讓學(xué)生思考上面所提出的問題,教師從旁啟發(fā))

師:如果出現(xiàn)豎式計(jì)算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學(xué)生怎么得來的,運(yùn)算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯(cuò)誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個(gè)因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式。

(2 a2b-8a2b)÷(4a-b)

=-2ab(4a-b)÷(4a-b)

=-2ab

(讓學(xué)生自己比較哪種方法好)

利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計(jì)算

(4x2-9)÷(3-2x)

學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)

(全體學(xué)生動(dòng)手動(dòng)腦,然后叫學(xué)生回答,及時(shí)表揚(yáng),講練結(jié)合, [運(yùn)用多項(xiàng)式的因式分解和換元的思想,可以把兩個(gè)多項(xiàng)式相除,轉(zhuǎn)化為單項(xiàng)式的除法]

練習(xí)計(jì)算

(1)(a2-4)÷(a+2)

(2)(x2+2xy+y2)÷(x+y)

(3)[(a-b)2+2(b-a)] ÷(a-b)

三、合作學(xué)習(xí)

1、以四人為一組討論下列問題

若a?b=0,下面兩個(gè)結(jié)論對(duì)嗎?

(1)a和b同時(shí)都為零,即a=0且b=0

(2)a和b至少有一個(gè)為零即a=0或b=0

[合作學(xué)習(xí),四個(gè)小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語言表達(dá)能力,體會(huì)運(yùn)用因式分解的實(shí)際運(yùn)用作用,增加學(xué)習(xí)興趣]

2、你能用上面的結(jié)論解方程

(1)(2x+3)(2x-3)=0 (2)2x2+x=0

解:

∵(2x+3)(2x-3)=0

∴2x+3=0或2x-3=0

∴方程的解為x=-3/2或x=3/2

解:x(2x+1)=0

則x=0或2x+1=0

∴原方程的解是x1=0,x2=-1/2

[讓學(xué)生先獨(dú)立完成,再組織交流,最后教師針對(duì)性地講解,讓學(xué)生總結(jié)步驟:1、移項(xiàng),使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]

3、練習(xí),解下列方程

(1)x2-2x=0 4x2=(x-1)2

四、小結(jié)

(1)應(yīng)用因式分解和換元思想可以把某些多項(xiàng)式除法轉(zhuǎn)化為單項(xiàng)式除法。

(2)如果方程的等號(hào)一邊是零,另一邊含有未知數(shù)x的多項(xiàng)式可以分解成若干個(gè)x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個(gè)一元一次方程來解。

設(shè)計(jì)理念:

根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。