只有在認真分析了教學目標后動筆,我們寫出的教案才有意義,想要寫出全面的教案,我們一定要認真分析自己的教學目標,以下是范文社小編精心為您推薦的解方程例4教案8篇,供大家參考。
解方程例4教案篇1
教學目標:
1、 使學生會列一元一次方程解有關應用題。
2、 培養(yǎng)學生分析解決實際問題的能力。
復習引入:
1、在小學里我們學過有關工程問題的應用題,這類應用題中一般有工作總量、工作時間、工作效率這三個量。這三個量的關系是:
(1)__________ (2)_________ (3)_________
人們常規(guī)定工程問題中的工作總量為______。
2、由以上公式可知:一件工作,甲用a小時完成,則甲的工作量可看成________,工作時間是________,工作效率是_______。若這件工作甲用6小時完成,則甲的工作效率是_______。
講授新課:
1、例題講解:
一件工作,甲單獨做20小時完成,乙單獨做12小時完成。
問:甲乙合做,需幾小時完成這件工作?
(1)首先由一名至兩名學生閱讀題目。
(2)引導
Ⅰ:這道題目的已知條件是什么?
Ⅱ:這道題目要求什么問題?
Ⅲ:這道題目的相等關系是什么?
(3)由一學生口頭設出求知數,并列出方程,師生共同解答;同時教師在黑板上寫出解題過程,形成板書。
2、練習:
有一個蓄水池,裝有甲、乙、丙三個進水管,單獨開甲管,6分鐘可注滿空水池;單獨開乙管,12分鐘可注滿空水池;單獨開丙管,18分鐘可注滿空水池,如果甲、乙、丙三管齊開,需幾分鐘可注滿空水池?
此題的處理方法:
Ⅰ:先由一名學生閱讀題目;
Ⅱ:然后由兩名學生板演。
解方程例4教案篇2
知識技能
會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。
數學思考
1.經歷探索具體問題中的數量關系過程,體會一元一次方程是刻畫實際問題的有效數學模型。進一步發(fā)展符號意識。
2.通過一元一次方程的學習,體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數學角度和方法解決問題,發(fā)展應用意識。
經歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。
情感態(tài)度
經歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現的快樂。
教學重點
建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。
教學難點
分析實際問題中的相等關系,列出方程。
教學過程
活動一 知識回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?
教師:前面我們學習了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學生:獨立完成,板演2、4題,板演同學講解所用到的變形或運算,共同講評。
教師提問:(略)
教師追問:變形的依據是什么?
學生獨立思考、回答交流。
本次活動中教師關注:
(1)學生能否準確理解運用等式性質和合并同列項求解方程。
(2)學生對解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個環(huán)節(jié),引導學生回顧利用等式性質和合并同類項對方程進行變形,再現等式兩邊同時加上(或減去)同一個數、兩邊同時乘以(除以,不為0)同一個數、合并同類項等運算,為繼續(xù)學習做好鋪墊。
活動二 問題探究
問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據現有經驗你打算怎么做?
(學生嘗試提問)
學生:讀題,審題,獨立思考,討論交流。
1.找出問題中的已知數和已知條件。(獨立回答)
2.設未知數:設這個班有x名學生。
3.列代數式:x參與運算,探索運算關系,表示相關量。(討論、回答、交流)
4.找相等關系:
這批書的總數是一個定值,表示它的兩個等式相等.(學生回答,教師追問)
5.列方程:3x+20=4x-25(1)
總結提問:通過列方程解決實際問題分析時,要經歷那些步驟?書寫時呢?
教師提問1:這個方程與我們前面解過的方程有什么不同?
學生討論后發(fā)現:方程的兩邊都有含x的項(3x與4x)和不含字母的常數項(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉化呢?
學生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數項,等號兩邊同減去20.
3x-4x=-25-20(2)
教師提問3:以上變形依據是什么?
學生回答:等式的性質1。
歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。
師生共同完成解答過程。
設問4:以上解方程中“移項”起了什么作用?
學生討論、回答,師生共同整理:
通過移項,含未知數的項與常數項分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個方程,我們經歷了那些步驟?列方程時找了怎樣的相等關系?
學生思考回答。
教師關注:
(1)學生對列方程解決實際問題的一般步驟:設未知數,列代數式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數學活動中,體驗探究發(fā)現成功的快樂。
活動三 解法運用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個方程時,第一步我們先干什么?
學生講解,獨立完成,板演。
提問:“移項”是注意什么?
學生:變號。
教師關注:學生“移項”時是否能夠注意變號。
通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。
活動四 鞏固提高
1.第91頁練習(1)(2)
2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?
3.小明步行由a地去b地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求a、b兩地之間的距離。
教師按順序出示問題。
學生獨立完成,用實物投影展示部分學而生練習。
教師關注:
1.學生在計算中可能出現的錯誤。
2.x系數為分數時,可用乘的辦法,化系數為1。
3.用實物投影展示學困生的完成情況,進行評價、鼓勵。
鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學生對解方程步驟的掌握情況和可能出現的計算錯誤。
2、3題的重點是在新情境中引導學生利用已有經驗解決實際問題,達到鞏固提高的目的。
活動五
提問1:今天我們學習了解方程的那種變形?它有什么作用、應注意什么?
提問2:本節(jié)課重點利用了什么相等關系,來列的方程?
教師組織學生就本節(jié)課所學知識進行小結。
學生進行總結歸納、回答交流,相互完善補充。
教師關注:學生能否提煉出本節(jié)課的重點內容,如果不能,教師則提出具體問題,引導學生思考、交流。
引導學生對本節(jié)所學知識進行歸納、總結和梳理,以便于學生掌握和運用。
布置作業(yè):
第93頁第3題。
解方程例4教案篇3
1、通過對多種實際問題的分析,感受方程作為刻畫現實世界有效模型的意義;
2、了解什么是方程,什么是一元一次方程及什么是方程的解。
1、認識列方程解決問題的思想以及用字母表示未知數,用方程表示相等關系的符號化的方法
2、結合從實際問題中得出的方程,學會用“去分母”解一元一次方程,進一步體會化歸的思想。體驗數學與日常生活密切相關,認識到許多實際問題可以用數學方法解決,激發(fā)學習數學的熱情。建立一元一次方程的概念。 問題與情境 師生活動 設計意圖
一、創(chuàng)設情境,展示問題:
問題1:世界最大的動物是藍鯨,一只藍鯨重124噸,比一頭大象體重的25倍少一噸,這頭大象重幾噸? 問題2: 章前圖中的汽車勻速行駛途經王家莊、青山、秀水三地的時間如表所示,翠湖在青山、秀水之間,距青山50千米,距秀水70千米,王家莊到翠湖有多遠? 地名 時間 王家莊 10:00 青山 13:00 秀水 15:00 教師展示問題,要求用算術解法,讓學生充分發(fā)表意見。算術方法:(124+1)÷25=5(噸)方程方法:可設大象重為`噸,則124=25`-1 學生獨立思考,小組交流,代表發(fā)言,解釋說明。問題1的算術解法:(50+70)÷2=60(千米/時) 605-70=230(千米) 問題1用算術法較容易解決,但問題2卻不容易解決,這樣產生矛盾沖突,使學生認識到進一步學習的必要性。 示意圖有助于分析問題。
二、尋找關系,列出方程
1、對于問題1,如果設王家莊到翠湖的路程是`千米,則: 路程 時間 速度 王家莊-青山 王家莊-秀水 根據汽車勻速前進,可知各路段汽車速度相等,列方程。
2、比一比:列算式與列方程有什么不同?哪一個更簡便?
3、想一想:對于問題1,你還能列出其他方程嗎?如果能,你根據的是哪個相等關系?你認為列方程的關鍵是什么? 結合圖形,引導學生分析各路段的路程、速度、時間之間的關系,填寫表格。學生思考回答:
1、王家莊-青山(`—50)千米,王家莊-秀水(`+70)千米。
2、汽車以每小時(`-50)÷3千米的速度從王家莊到青山;以每小時(`+70)÷5千米的速度從王家莊到秀水。 讓學生體會:用算術方法解題時,列出的算式只能用已知數,而列方程解題時,方程中既含有已知數,又含有用字母表示的未知數。
三、定義方程,建立模型
1、定義:(板書)含有未知數的等式叫做方程。
練習一:判斷下列式子是不是方程,是的打“adic;”,不是的打“` ”.
(1)1+2=3 ( ) (4) ( ) (2) 1+2`=4 ( ) (5) `+y=2 ( ) (3) `+1-3 ( ) (6) `2-1=0 ( )
練習二:根據下列問題,設未知數并列出方程。
(1)用一根長24cm的鐵絲圍成一個正方形,正方形的邊長是多少?解:設正方形的邊長為` cm。那么依題意得到方程:_________. (2)一臺計算機已使用1700小時,預計每月再使用150小時,經過多少月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時?解:經過`月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時,那么依題意得到方程:_________. (3)某校女生占全體學生的52%,比男生多80人,這個學校有多少學生?解:設這個學校的學生為`,那么女生數為 ,男生數為 . 由此依題意得到方程:________________。 [議一議]:上面的四個方程有什么共同點? 2、定義:只含有一個未知數(元`),未知數的指數是1次,這樣的方程叫做一元一次方程。
練習三:判斷下列方程哪些是一元一次方程?(1) (2) (3) (4) (5)
3、方程的解:再看剛才列出的方程:4`=24,你能觀察出當`=?時,4`的值正好等于24嗎。學生回答后總結方程的解和解方程的概念。
4、歸納分析實際問題中的數量關系,利用其中的相等關系 列出方程,是用數學解決實際問題的一種方法。 (學生舉例并完成練習一) 師生合作,根據數量關系列出方程。
教師結合練習給出方程、一元一次方程的定義。 (我國古代稱未知數為元,只含有一個未知數的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右兩邊相等的未知數的值就是這個方程的解. 教師引導學生對上面的分析過程進行思考,將實際問題轉化為數學問題的一般過程。
學生舉出方程的例子。 (學生獨立思考、互相討論,先分析出等量關系,再根據所設未知數列出方程) 判斷哪些是一元一次方程。 學生單獨計算,并填表。 學生得出解決實際問題的模型。
四、訓練鞏固,課堂小結
1、根據下列問題,設未數列方程,并指出是不是一元一次方程。(1)環(huán)形跑道一周長400m,沿跑道跑多少周,可以跑3000m?(2)甲種鉛筆每枝0.3元,乙種鉛筆每枝0.6元,用9元錢買了兩種鉛筆共20枝,兩種鉛筆各買了多少枝?(3)一個梯形的下底比上底多2㎝,高是5㎝,面積是40㎝2,求上底。
2、小結 本節(jié)課你學到了哪些知識?哪些方法?
五、布置作業(yè)a、 必做 82頁,第1、2、3、題; b、 拓展阿凡提經過了三個城市,第一個城市向他征收的稅是他所有錢財的一半又三分之一,第二個城市向他征收的稅是他剩余錢財的一半又三分之一,到第三個城市里,又向他征收他經過兩次交稅后所剩余錢財的一半又三分之一,當他回到家的時候,他剩下了11個金幣,問阿凡提原來有多少個金幣? c、課堂評價
1、 本節(jié)課的主要知識點是:
2、 你對列方程這節(jié)課的感受是:
3、 這節(jié)課我的困惑是: 解:(1) 設跑`周. 列方程400`=3000
4、 (2)設甲種鉛筆買了`枝,乙種鉛筆買了(20-`)枝.列方程 0.3`+0.6(20-`)=9 (3)設上底為` cm,下底為(`+2)cm.列方程 學生自己探索,獨立完成,集體訂正。 學生課后完成,并寫學習心得。
解方程例4教案篇4
一、教學目標
1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數量關系列出一元二次方程。
2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數式的初步經驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經驗與所學的知識結合起來,形成實事求是的態(tài)度以及進行質疑和獨立思考的習慣。
二、教學重難點
重點:理解一元二次方程的意義,能根據題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。
難點:找對題目中的數量關系從而列出一元二次方程。
三、教學過程
(一)導入新課
師:同學們我們就要開始學習一元二次方程了,在開始講新課之前,我們首先來看一看第二十二章的這張圖片,圖片上有一個銅雕塑,有哪位同學能告訴我這是誰嗎?
生:老師,這是雷鋒叔叔。
師:對,這是遼寧省撫順市雷鋒紀念館前的雷鋒雕像,雷鋒叔叔一生樂于助人,奉獻了自己方便了他人,所以即使他去世了,也活在人們心中,所以人們才給他做一個雕塑紀念他,同學們是不是也要向雷鋒叔叔學習啊?
生:是的老師。
師:可是原來紀念館的工作人員在建造這座雕像的時候曾經遇到了一個問題,也就是圖片下面的這個問題,同學們想不想為他們解決這個問題呢?
生:想。
師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。
(二)新課教學
師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。
(下去巡視)
(三)小結作業(yè)
師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。
四、板書設計
五、教學反思
解方程例4教案篇5
?教學目標】
知識目標: 1、通過觀察,歸納二元一次方程的概念 ,會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式.
2、二元一次方程解的不定性和相關性,即二元一次方程的解有無數個,但又不是任意兩個數是它的解。
過程與方法:通過與一元一次方程的比較,加強學生的類比的思想方法。
情感態(tài)度與價值觀:通過“合作學習”,使學生認識數學是根據實際的需要而產生發(fā)展的觀點。
?教學重點、難點】
重點:二元一次方程的意義及二元一次方程的解的概念。
難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。
?教學過程】
一、 復習引入:
(1) 方程的概念;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?
(2) 合作學習:
①小紅到郵局寄掛號信,需要郵資3元8角。小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?
這個問題中有幾個未知數,能列一元一次方程求解嗎?
如果設需要票額為6角的郵票x張,需要票額為8角的郵票y張,你能列出方程嗎?
②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,你能列出方程嗎?
二、 新課教學
這就是我們今天要學習的4、1二元一次方程(板書課題)
(1) 觀察上述兩個方程,歸納特點
(2) 討論選擇正確概念
① 含有兩個未知數的方程叫二元一次方程。
② 含有兩個未知數,且含有未知數的項的次數都是1次的方程叫二元一次方程。
(3) 做一做p86——1,2
(4) 例:已知方程3x+2y=10
① 用關于x的代數式表示y (分析:只要把方程3x+2y=10看作未知數是y的一元一次方程,解關于y的方程)
② 求當x=-2,0,3時,對應的y的值
(提問:把x=-2,y=8代入方程3x+2y=10,能否使其左右兩邊相等?
回憶方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一個解,記作 。
同理試寫出該方程的兩個解(注意寫法格式)
思考:方程3x+2y=10的解有多少個?
師歸納:二元一次方程解具不定性和相關性
(5) 練習:p88——課內練習1,2
(6) 補充練習:p89---作業(yè)題4(說明:方程的解須是正整數)
已知 ,是方程2x+3y=5的一個解,那么由此可知道些什么?
(說明:1.本例是根據教科書p89---b組第5題改編。原題要求a的值,但學
生常常有困難,因此這里把原題改為開放式命題,看起來似乎比原
題要求高了,其實有利于各類學生參與并尋求結論。
三、 課堂小結:
二元一次方程的意義及二元一次方程的解的概念(注意書寫格式)
二元一次方程解的不定性和相關性
會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式
四、 作業(yè) :
課堂作業(yè)本
解方程例4教案篇6
教學目標:
1、通過回顧等式、不等式、用字母表示的式子等內容,進一步鞏固加深學生對方程的理解和認識。
2、會用方程表示簡單的等量關系,會列方程解決簡單問題。
3、感受式與方程在解決問題中的價值,培養(yǎng)初步的代數思想。
教學重點:
明確字母表示數的意義和作用;會靈活的用方程解答兩步簡單的實際問題。
教學難點:
找等量關系式,用方程解決實際問題。
教學過程:
一、導入
我們都記得這首兒歌
一只青蛙一張嘴,兩只眼睛四條腿;
兩只青蛙兩張嘴,四只眼睛八條腿;
請你來接下句
三只青蛙_________;
五只青蛙呢?
n只青蛙呢?
一首小小的兒歌展示了數學的機智和趣味,細心的同學已經發(fā)現,這首兒歌不僅融入了數字,還包含著字母,用字母來表示數。我們今天的課就圍繞用“字母表示的數”來展開。
二、進行復習
1、用字母表示數
(1)同學們想一想,在數學中有哪些地方常用字母來表示?
生列舉:數量關系(路程、速度、時間 即s=vt)
計算公式(長方形面積計算公式:s=ab 圓柱的體積公式:v=sh 等)
運算定律(加法結合律:a+b+c=a+(b+c)等)
(2)請同桌之間相互舉兩個這樣的例子。
(3)你們知道為什么用字母表示數嗎?
(4)現在就讓我們一起來試一試:請大家翻開課本71頁,抓緊時間做一做吧。生自主完成課本(1)~(4)題。師巡視;完成后全班交流答案,重點說一說表示的意義。
(5)現在我把第(4)題做一下修改:一臺插秧機上午工作5小時,下午工作3小時,上下午一共插秧160平方米,問:每小時插秧多少平方米?
算法有兩種:其一:算術方法:160÷(5+3)=20
依據:總插秧數量÷時間=單位時間量
其二:列方程:x(5+3)=160
依據:單位時間量×時間=總插秧數量
觀察比較:以上兩種解法有哪些相同點和不同點?
相同點:都是根據數量間的相等關系列式。
不同點:解法一:以已知推出未知,是算術法。
解法二:把未知數用x表示,列出含有未知數的等式,即方程。
同學們想一想,等式和方程有什么聯系和區(qū)別?
方程有哪些性質呢?(等式 、含有未知數)
2、方程
(1)判斷下列哪些是方程(說明理由)
7+8=3×5 4a+5b a+12=89
4x=y 3+100>25+y 6+x=0.5×3
(2)你會解方程嗎?從中選擇一個試一試。
(3)如何判斷方程的解是否正確?
(4)列方程解應用題的解題步驟是怎樣的?
討論后得出:①弄清題意,找出未知數,并用x表示;
②找出應用題中數量之間的相等關系,列方程;
③解方程;
④檢驗,寫出答案。
3、列方程解決問題
(1)在生活中我們經常會遇到一些實際問題,列方程解方程能幫我們很快解決。例如,這副乒乓球拍到底多少元呢?讓我們一起來算一算。
請生一起看書71頁例一:李老師買下面的球拍,給售貨員100元,找回2元,一副乒乓球拍的價錢是多少元?
引導生認真審題,找出等量關系,自己列出方程并求解。交流解題思路。
(2)生嘗試自主解決例二:相遇問題。師巡視,請生到黑板完成,全班交流。
(3)練習
①練一練1
②師展示習題:說出下面每組數量之間的相等關系。
(1)女生人數,男生人數,全班人數;
(2)蘋果的重量,梨的重量,梨比蘋果少的重量。
(3)一輛公共汽車中途到站后,先下去15人,又上來9人,這時車上正好有30人,到站前車上有多少人?
(4)一本書240頁,小剛看了5天,還剩165頁沒看,平均每天看多少頁?
③課本練一練5
三、小結
說一說你今天的收獲在哪里?
解方程例4教案篇7
教學目標:
1、使學生通過自主探索學會列方程解比較容易的兩步應用題
2、培養(yǎng)學生的主體意識,創(chuàng)新意識,合作意識以及分析能力,觀察能力,發(fā)散思維能力,表達能力
3、使學生體驗到生活中處處是數學,體驗到數學的應用價值,體驗到數學學習的樂趣和成就感。 教學重點:掌握列方程解應用題的方法步驟。 教學難點:根據題意分析數量間的相等關系。
教學準備:多媒體課件
教學設計:教師創(chuàng)設生活情境,使孩子在一個充滿鼓勵,充滿肯定,充滿分享,充滿贊美的環(huán)境中學習。培養(yǎng)他們感悟生活的能力。
教學過程:
一、創(chuàng)設生活情境,復習舊知,導入新課
1、師:同學們,休息日的時候,你們都做些什么? 生:看電視、補課等。
2、師:出去玩同樣會學到知識,只要你留心,生活中處處都是數學, 上周日小明和媽媽去公園玩就遇到了好多數學問題。 (課件顯示)小明最喜歡坐飛機了,于是媽媽給了他一些錢,讓他自己去買票。(課件顯示)他花了5元錢,還剩15元,媽媽給了小明多少錢,你們知道嗎? 學生匯報,解題思路并列式 師:誰還有不同的方法? 學生用含未知數x的方法進行匯報 肯定學生的發(fā)言,引出課題。
二、合作學習,探索新知
教學例題 (課件顯示)玩下一項游樂項目,先去買票,票價6元,買兩張,還剩38元,你知道這次媽媽又給了小明多少錢嗎? 想一想,這組信息中蘊含著怎樣的關系呢? 學生匯報。 師肯定學生發(fā)言。 下面,我們就用列方程的方法來解決這個問題吧!你們認為應該怎樣做? 學生猜想。 師:現在,請同學們用自己找出的數量關系,根據剛才討論的結果來列方程解決這個問題吧?。學生匯報,老師板書。 歸納步驟. 師:學到這,請同學們回顧并討論一下,剛才我們用列方程的方法解題時經過了哪些步驟? 學生充分討論后匯報。 師:看看數學專家是怎么歸納的呢?(出示投影) 肯定學生,贊揚學生。
三、實際應用
1、師:小明玩了半天,他和媽媽都感到口渴了,不知買什么飲料好。誰愿意幫小明出出主意? 師:現在我們虛擬購買飲料的場景。我當售貨員,各小組派一名同學買飲料。用今天學習的知識求每瓶水的價錢。 學生在小組內合作,共同解決問題。 匯報時讓學生說說是怎么思考的,請其他同學針對他們的思考方法和解答過程提出意見。
2、(課件演示)小明選擇了買酸奶。 (出示小票)看了小明的購物小票,從中你知道了什么?還有什么是不知道的?( 數量) 學生解決問題,獨立完成后小組成員互評,并給有困難的同學幫助。 教師巡視指導。 學生匯報。
3、最后,媽媽還剩下38元錢,要買些水果回去,看到蘋果每千克3元;梨每千克2元;香蕉每千克6元;桔子每千克4元,可還要剩下20元錢買生日蛋糕。如果你是小明,你想賣哪種水果呢?利用本節(jié)課所學的知識算一算,看看能買幾斤? 學生可討論,可試做。做后匯報。
四、全班總結
師:通過這節(jié)課的學習,你有哪些收獲? 學生從各方面回答。 師:今天,同學們的收獲可真不??!課后讓我們繼續(xù)運用今天所學的知識去解決生活中的實際問題吧!最后我送給大家一句話:生活中處處充滿了知識,要學會做一個生活中的有心人,你才能成為學習上的成功者。
解方程例4教案篇8
一、教學目標
(一).知識與技能
會利用合并同類項解一元一次方程.
(二).過程與方法
通過對實例的分析,體會一元一次方程作為實際問題的數學模型的作用.
(三).情感態(tài)度與價值觀
開展探究性學習,發(fā)展學習能力.
二、重、難點與關鍵
(一).重點:會列一元一次方程解決實際問題,并會合并同類項解一元一次方程.
(二).難點:會列一元一次方程解決實際問題.
(三).關鍵:抓住實際問題中的數量關系建立方程模型.
三、教學過程
(一)、復習提問
1.敘述等式的兩條性質.
2.解方程:4(·- )=2.
解法1:根據等式性質2,兩邊同除以4,得:
·- =
兩邊都加 ,得·= .
解法2:利用乘法分配律,去掉括號,得:
4·- =2
兩邊同加 ,得4·=
兩邊同除以4,得·= .
(二)、新授
公元825年左右,中亞細亞數學家阿爾、花拉子米寫了一本代數書,重點論述怎樣解方程.這本書的拉丁文譯本取名為《對消與還原》.對消與還原是什么意思呢?讓我們先討論下面內容,然后再回答這個問題.
問題1:某校三年級共購買計算機140臺,去年購買數量是前年的2倍,今年購買數量又是去年的2倍,前年這個學校購買了多少臺計算機?
分析:設前年這個學校購買了·臺計算機,已知去年購買數量是前年的2倍,那么去年購買2·臺,又知今年購買數量是去年的2倍,則今年購買了22·(即4·)臺.
題目中的相等關系為:三年共購買計算機140臺,即
前年購買量+去年購買量+今年購買量=140
列方程:·+2·+4·=140
如何解這個方程呢?
2·表示2·,4·表示4·,·表示1·.
根據分配律,·+2·+4·=(1+2+4)·=7·.
這樣就可以把含·的項合并為一項,合并時要注意·的系數是1,不是0.
下面的框圖表示了解這個方程的具體過程:
·+2·+4·=140
合并
7·=140
系數化為1
·=20
由上可知,前年這個學校購買了20臺計算機.
上面解方程中合并起了化簡作用,把含有未知數的項合并為一項,從而達到把方程轉化為a·=b的形式,其中a、b是常數.
例:某班學生共60分,外出參加種樹活動,根據任何的不同,要分成三個小組且使甲、乙、丙三個小組人數之比是2:3:5,求各小組人數.
分析:這里甲、乙、丙三個小組人數之比是2:3:5,就是說把總數60人分成10份,甲組人數占2份,乙組人數占3份,丙組人數占5份,如果知道每一份是多少,那么甲、乙、丙各組人數都可以求得,所以本題應設每一份為·人.
問:本題中相等關系是什么?
答:甲組人數+乙組人數+丙組人數=60.
解:設每一份為·人,則甲組人數為2·人,乙組人數為3·人,丙組為5·人,列方程:
2·+3·+5·=60
合并,得10·=60
系數化為1,得·=6
所以2·=12,3·=18,5·=30
答:甲組12人,乙組18人,丙組30人.
請同學們檢驗一下,答案是否合理,即這三組人數的比是否是2:3:5,且這三組人數之和是否等于60.
(三)、鞏固練習
1.課本第89頁練習.
(1)·=3.
(2)可以先合并,也可以先把方程兩邊同乘以2.
具體解法如下:
解法1:合并,得( + )·=7
即 2·=7
系數化為1,得·=
解法2:兩邊同乘以2,得·+3·=14
合并,得 4·=14
系數化為1,得 ·=
(3)合并,得-2.5·=10
系數化為1,得·=-4
2.補充練習.
(1)足球的表面是由若干個黑色五邊形和白色六邊形皮塊圍成的,黑白皮塊的數目比為3:5,一個足球的表面一共有32個皮塊,黑色皮塊和白色皮塊各有多少?
(2)某學生讀一本書,第一天讀了全書的多2頁,第二天讀了全書的少1頁,還剩23頁沒讀,問全書共有多少頁?(設未知數,列方程,不求解)
解:(1)設每份為·個,則黑色皮塊有3·個,白色皮塊有5·個.
列方程 3·+2·=32
合并,得 8·=32
系數化為1,得 ·=4
黑色皮塊為43=12(個),白色皮塊有54=20(個).
(2)設全書共有·頁,那么第一天讀了( ·+2)頁,第二天讀了( ·-1)頁.
本問題的相等關系是:第一天讀的量+第二天讀的量+還剩23頁=全書頁數.
列方程: ·+2+ ·-1+23=·.
四、課堂小結
初學用代數方法解應用題,感到不習慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實際問題的一般步驟,其中找等量關系是關鍵也是難點,本節(jié)課的兩個問題的相等關系都是:總量=各部分量的和.這是一個基本的相等關系.
合并就是把類型相同的項系數相加合并為一項,也就是逆用乘法分配律,合并時,注意·或-·的系數分別是1,-1,而不是0.
五、作業(yè)布置
1.課本第93頁習題3.2第1、3(1)、(2)、4、5題.
2.選用課時作業(yè)設計.
合并同類項習題課(第2課時)
一、解方程.
1.(1)3·+3-2·=7; (2) ·+ ·=3;
(3)5·-2-7·=8; (4) y-3-5y= ;
(5) - =5; (6)0.6·- ·-3=0.
二、解答題.
2.育紅小學現有學生320人,比1995年學生人數的 少150人,問育紅小學1995年學生人數是多少?
3.甲、乙兩地相距460千米,a、b兩車分別從甲、乙兩地開出,a車每小時行駛60千米,b車每小時行駛48千米.
(1)兩車同時出發(fā),相向而行,出發(fā)多少小時兩車相遇?
(2)兩車相向而行,a車提前半小時出發(fā),則在b車出發(fā)后多少小時兩車相遇?相遇地點距離甲地多遠?
4.甲、乙二人從a地去b地,甲步行每小時走4千米,乙騎車每小時比甲多走8千米,甲出發(fā)半小時后乙出發(fā),恰好二人同時到達b地,求a、b兩地之間的距離.
5.一條環(huán)形跑道長400米,甲練習騎自行車,平均每分鐘行駛550米;乙練習長跑,平均每分鐘跑250米,兩人同時、同地、同向出發(fā),經過多少時間,兩人首次相遇?
答案:
一、1.(1)·=4 (2)·=4 (3)·=-5 (4)·=- (5)·=30 (6)·=11
二、2.705人,設育紅小學1995年學生人數為·人,列方程320= ·-150.
3.(1)4 小時,設出發(fā)后·小時相遇,列方程60·+48·=460.
(2)3 小時,設b車開出后·小時兩車相遇,列方程60 +60·+48·=460.
4.3千米,設a、b兩地間的距離為·千米, - = .
5.1 分鐘,設經過·分鐘兩人首次相遇,列方程550·-250·=400.
解一元一次方程
──移項(第3課時)
一、教學內容
課本第89頁至第91頁.
二、教學目標
(一).知識與技能
理解移項法,并知道移項法的依據,會用移項法則解方程.
(二).情感態(tài)度與價值觀
鼓勵學生自主探索與合作交流,發(fā)展思維策略,體會方程的應用價值.
三、重、難點與關鍵
(一).重點:運用方程解決實際問題,會用移項法則解方程.方程的各項應包括前面的符號
(二).難點:對立相等關系.
(三).關鍵:理解移項法則的依據,以及尋找問題中的等量關系.
四、教學過程 (一)、復習提問
1.運用方程解決實際問題的步驟是什么?
2.解方程: + =10.
(二)、新授
問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本,這個班有多少學生?
分析:設這個班有·名學生,根據第一種分法,分析已知量和未知量間的關系.
1.每人分3本,那么共分出多少本?(3·本)
2.共分出3·本和剩余的20本,可知道什么?
答:這批書共有(3·+20)本.
根據第二種分法,分析已知量與未知量之間的關系.
3.每人分4本,那么需要分出多少本?(4·本)
4.需要分出4·本和還缺少25本那么這批書共有多少本?
答:這批書共有(4·-25)本.
這批書的總數有幾種表示法?它們之間有什么關系?本題哪個相等關系可以作為列方程的依據?
這批書的總數是一個定值(不變量)表示它的兩個式子應相等.
根據這一相等關系,列方程:
3·+20=4·-25
本題還可以畫示意圖,幫助我們分析:
從示意圖中容易得到這批書的總數與分出書、剩下書的關系是:
這批書的總數=3·+30
這批書的總數與需要分出的書的數量、還缺少書的數量關系是:
這批書的總數=4·-25
根據兩種分法,這批書的總數是相等的.
所以,列方程3·+20=4·-25.
注意變化中的不變量,尋找隱含的相等關系,從本題列方程的過程,可以發(fā)現:表示同一個量的兩個不同式子相等.
思考:方程3·+20=4·-25的兩邊都含有·的項(3·與4·),也都含有不含字母的常數項(20與-25)怎樣才能使它轉化為·=a(常數)的形式呢?
要使方程右邊不含·的項,根據等式性質1,兩邊都減去4·,同樣,把方程兩邊都減去20,方程左邊就不含常數項20,即
3·+20 -4·-20 =4·-25 -4·-20
即 3·-4·=-25-20
將它與原來方程比較,相當于把原方程左邊的+20變?yōu)?20后移到方程右邊,把原方程右邊的4·變?yōu)?4·后移到左邊.
像上面那樣,把等式一邊的某項變號后移到另一邊,叫做移項.
方程中的任何一項都可以在改變符號后,從方程的一邊移到另一邊,即可以把方程等號右邊的項改變符號后移到等號的左邊,也可以把方程左邊的項改變符號后移到方程的右邊,注意要先變號后移項,別忘了變號.
下面的框圖表示了解這個方程的具體過程.
3·+20=4·-25
移項
3·-4·=-25-20
合并
-·=-45
系數化為1
·=46
由此可知這個班共有45個學生.
思考:上面解方程中移項起了什么作用?
答:移項使方程中含·的項歸到方程的同一邊(左邊),不含·的項即常數項歸到方程的另一邊(右邊),這樣就可以通過合并把方程轉化為·=a形式.
在解方程時,要弄清什么時候要移項,移哪些項,目的是什么?
解方程時經常要合并和移項,前面提到的古老的代數書中的對消和還原,指的就是合并和移項.
如果把上面的問題2的條件不變,這個班有多少學生改為這批書有多少本?你會解嗎?試試看.
解法1:從原問題的解答中,已求的這個班有45個學生,只要把·=45代入3·+20(或4·-25)就可以求得這批書的總數為:
345+20=135+20=155(本)
解法2:如果不先求學生數,直接設這批書共有·本,又如何布列方程?這時該用哪個相等關系列方程呢?
這批書共有·本,余下20本,共分出(·-20)本,每人分3本,可以分給 人,即這個班共有 人.
這批書有·本,每人分4本,還缺少25本,共需要(·+25)本,可以分給 人,即這個班共有 人.
這個班的人數是一個定值,表示它的兩個式子應相等,根據這個相等關系列方程.
= (你會解這個方程嗎?)
即 - = +
移項,得 - = +
合并,得 =
系數化為1,得·=155.
答:這批書共有155本.
(三)、鞏固練習
1.課本第91頁練習.
(1)解:移項,得6·-4·=-5+7
合并,得 2·=2
系數化為1,得·=1
(2)解:移項,得 ·- ·=6
合并,得- ·=6
系數化為1,得·=-24
2.補充練習.
下列移項對不對?如果不對,錯在哪里?應當怎樣改正?
(1)從3·+6=0得3·=6;
(2)從2·=·-1得到2·-·=1;
(3)從2+·-3=2·+1得到2-3-1=2·-·.
解:(1)錯,移項忘了要變號,應改為3·=-6.
(2)錯.原方程中的-1仍然在方程右邊,并沒有移項,所以不要變號,應改為2·-·-=-1.
(3)正確.
四、課堂小結
1.列一元一次方程解決實際問題的關鍵是審題、讀懂題意和找相等關系,今天解決的這個問題的相等關系不明顯,隱含在問題中,表示同一個量的兩個式子是相等.這個相等關系可以作列方程的依據.
2.正確理解移項法則,移項中常犯的錯誤是忘記變號,還要注意移項與在方程的一邊交換兩項的位置有本質區(qū)別,移項的依據是等式性質,在方程的一邊交換兩項的位置是根據交換律.
五、作業(yè)布置
1.課本第93頁至第94頁習題3.2第2、3(3)(4)、6、7、8題.
2.選用課時作業(yè)設計.
移項習題課(第4課時)
一、填空題.
1.在方程的兩邊加上或減去同一項,相當于把原方程中的項______后,從方程的一邊移到另一邊,這種變形叫做________,其依據是________,移項要注意_____.
2.在方程的一邊交換兩項的位置______改變項的符號,而移項______改變符號.
3.解方程·+21=36得·=________;由10·-3=9得·=______.
二、判斷題.(對的打,錯的打)
4.移項就是把方程中的某一項移到等號的另一邊.( )
5.從6·=1,移項,得·=1-6,·=-5. ( )
6.由方程-4+·=7移項得·=7-4. ( )
三、解方程.
7.(1)8=7-2y; (2) = - ;
(3)5·-2=7·+8; (4)1- ·=3·+ ;
(5)2·- =- +2; (6)- ·+6=4·+1;
(7) -·=0.5·-3.
四、解答題.
8.設m=3·-2,n=-2·+3,當·為何值時m=n?
9.甲糧倉存糧1000噸,乙糧倉存糧798噸,現要從兩個糧倉中運走212噸糧食,使兩倉庫剩余的糧食數量相等,那么應從這兩個糧倉各運出多少噸?
答案:
一、1.合并 移項 合并同類項 變號 2.不 要 3.15 1.2
二、4. 5. 6.
三、7.(1)y=- (2)·= (3)·=-5 (4)·=-
(5)·=1 (6)·= (7)·=3
四、8.·=1 9.207,5,設從甲糧倉運出·噸,1000-·=798-(212-·)