教學倍數(shù)教學反思8篇

時間:2022-12-30 作者:couple 教學計劃

寫教學反思要有自己獨特的思維方式,經(jīng)常寫好教學反思是成為一名優(yōu)秀教師的前提,以下是范文社小編精心為您推薦的教學倍數(shù)教學反思8篇,供大家參考。

教學倍數(shù)教學反思8篇

教學倍數(shù)教學反思篇1

這是自入職以來第一堂得到李老師指點的課。感覺得到李老師課堂上對學生信任。也讓我更深一步的體會到,只有學生自己找出來的規(guī)律,特點,才能理解的更透徹,掌握的更牢固,應用起來更有效率。平日里,沒有給學生充分的時間,很多規(guī)律甚至是老師直接告訴學生的,雖然課堂教學的速度有了,但是效率并不高,后期教師要花費的時間更多。那才是真正的丟了西瓜撿芝麻!

下面從幾點來分析本節(jié)課

一、優(yōu)點

課堂掌控力不錯,教師的個人素質(zhì)也不錯。

二、不足

1、 是除不盡的。但是課堂上,我卻當做了能除盡的。思考出現(xiàn)這個錯誤的原因,是自己對課堂、對學生的預設不足!

2、26是13和2的倍數(shù),13和2是26的因數(shù)------大家發(fā)現(xiàn)沒有,大的是倍數(shù),小的是因數(shù)!

我非常清楚,倍數(shù)、因數(shù)是有依存關(guān)系的,而不能單獨說,但是課堂上卻說出了“大的是倍數(shù),小的是因數(shù)”這樣一句有問題的話。失??!

歸結(jié)原因,還是課堂太想投機取巧。作為一個引導學生入門的老師,在知識的門口,真的不能有絲毫差池,更不能為了一時的省事,而為后面的教學買下禍根!

三、除了錯誤,還有很多做的復雜、不到位的地方。

1、開篇之時,復習自然數(shù),是為本節(jié)課作知識鋪墊用的,但是,問題中的“自然數(shù)有什么特點?”卻是一個設計失敗的問題。已經(jīng)學到高等數(shù)學的我,自然之道,自然數(shù)的特點到底有多龐雜!根本不是一兩句話說的清的,但是我卻問了這樣一個問題。

2、給定12張卡片列除法算式求商時,可以限定時間30秒,看說寫的又多又準確。也就是說能全員參與的,就單獨。讓學生在數(shù)學作業(yè)紙上寫完后,可以抓條,然后教師可以挑選著在摘錄一些。這樣準備充分,也可以為后面的分類打下堅實的基礎。

3、找個一個數(shù)的因數(shù)時,要先找,在訂正,最后讓學生說說做法。而后更正練習,接著判斷,說方法。只有清楚的.說出了方法,才能保證學生是真懂了。在這個過程中,還可以鼓勵學生總結(jié)一些自己的做法,比如用乘法找因數(shù),乘到幾就不乘了。用除法也是,除到幾就不除了?。ㄟ@個數(shù)的中間位置)

4、本節(jié)課最好的量是到會找一個數(shù)的因數(shù)就可以了,接著歸納一個數(shù)因數(shù)的特點部分就拖堂了。內(nèi)容不能很好的在一堂課中充分的展現(xiàn)!

一堂課教會了我很多,尤其是在教學方法上,李老師后來的引導,讓我清楚的看到了學生的聰明,學生的觀察力!要相信學生------首先要給學生時間去觀察,去思考,去發(fā)現(xiàn)!否則,學生的思維永遠得不到真正的發(fā)展!能力無法得到充分的提升。

教學倍數(shù)教學反思篇2

反思教學效果總結(jié)了的原因有以下幾點:

(一)素數(shù)和合數(shù)的判斷不熟練。一些數(shù)如:49、51、91這些數(shù)看上去是素數(shù),但其實是合數(shù)。這些數(shù)經(jīng)常被學生誤認為是素數(shù)而導致錯誤,原因是這些學生就簡單的看看,而不愿意用2、3、5等素數(shù)去嘗試,努力尋找是不是有第3個因數(shù)存在。

(二)意思相同,但語句表述不同時,有的學生就不能正確理解。如:在上面的數(shù)只有兩個因數(shù)的數(shù)有哪些?其實這道題目就是問在上面的數(shù)中素數(shù)有哪些。

(三)有的學生缺少分析理解,研究和判斷的能力,判斷和選擇題的錯誤比較多。例如:1的倍數(shù)肯定是奇數(shù)。如果一個學生先找到1的倍數(shù),然后根據(jù)數(shù)的特點作出正確的判斷。但有的學生看到1是個奇數(shù),然后就簡單地做出它的倍數(shù)也是奇數(shù)想法。例如:一個數(shù)的倍數(shù)一定比它的因數(shù)大。如果學生找一個數(shù),看看它的最小倍數(shù)是哪個?找找它的最大因數(shù)是哪個?這樣不難找到正確的答案。但是有的倍數(shù)簡單地被題目的意思誤導,加上平時的練習中還有倍數(shù)一般都是大的,因數(shù)一般都是小的概念,學生容易誤判。

教學中,我和學生有時太滿足于平時練習的結(jié)果,而缺少讓學生進行數(shù)學思考和表達能力的過程訓練??磥碓谝院蟮慕虒W中,我要繼續(xù)改變教學觀念,要高度尊重學生,依靠學生,把以往教學中主要依靠教師轉(zhuǎn)變?yōu)橐揽繉W生。

建議

1、在新知教學中,注重引導學生進行探究。在本單元中找一個數(shù)的倍數(shù)和因數(shù),都有比較好的方法。如何通過學生的探究找到方法,成了教學的亮點。如“找36的因數(shù)” ,找一個數(shù)的因數(shù)是本課的難點。應該說,找出36的幾個因數(shù)并不難,難就難在找出36的所有因數(shù)。教學中,建議教師不要把方法簡單地告訴學生,而是讓學生獨立去探究,獨立寫出36的所有因數(shù),在學生反饋的基礎上教師再引導學生對有序和無序作比較,學生才能在比較、交流中感悟有序思考的必要性和科學性。交流的過程正是學生相互補充、相互接納的過程,是對學習內(nèi)容進行深加工和重組知識的過程,是學生的認知不斷走向深入,思維水平不斷提升的過程。這是新知探究階段的思維交流。既是不斷深化理解因數(shù)與倍數(shù)知識的過程,又是培養(yǎng)學生良好思維品質(zhì)的過程。給學生獨立思考的空間,提出了各自的解法或見解,是思維獨創(chuàng)性的培養(yǎng);引導學生一對一對有序的找,或從1開始,用除法一個個去試,是思維條理性的培養(yǎng);既有遷移于擺方塊的形象思維,又有直接運用除法算式的抽象思維,或乘除法口訣的綜合運用等,在感受解法多樣性中,培養(yǎng)了學生思維的靈活性。

2、寓教于樂,游戲中進行相應的鞏固練習。本節(jié)課是一節(jié)概念課,內(nèi)容比較枯燥,課本上的練習形式也比較單一,所以在認識倍數(shù)和因數(shù)后,應安排有趣味的游戲,比如數(shù)字轉(zhuǎn)盤游戲,讓學生看轉(zhuǎn)盤說指針停止時,內(nèi)圈的數(shù)與外圈的數(shù)的關(guān)系,進一步認識倍數(shù)和因數(shù),又能從中發(fā)現(xiàn)倍數(shù)和因數(shù)的相互依存的關(guān)系。在學會找倍數(shù)和因數(shù)之后也可設計游戲,如:“猜猜一位老師的電話號碼”,在一個八位數(shù)的號碼中已知其中四位,根據(jù)有關(guān)倍因數(shù)關(guān)系的問題請學生找出未知的四位號碼,以提高學生學習的積極性,稍有難度的練習給學有余力的學生一個證明自己能力的機會,讓學生在數(shù)學活動中體驗到數(shù)學學習的趣味性和挑戰(zhàn)性,學生運用所學知識解決問題,體會到了學習新知識后的成就感。

3、教師要注重評價的導向作用,讓學生在評價中成長。在第一課時學生交流12的因數(shù)時,教師展示了三位同學的作業(yè):第一種是無序的,第二種是從小到大有序的,第三種是一對一對有序的。接著老師讓第一種方法的學生說說自己的想法,并讓其他同學評論,此時大多數(shù)學生的評價都認為不好,找得缺漏、無序,這時其實作為老師是否可以問問這種答案“有沒有值得肯定的地方?”,畢竟找到的這些答案都是正確地,然后再去尋找更好的方法。如果老師能經(jīng)常注意這樣引導評價,學生自然而然地意識到要先看別人的優(yōu)點,再看別人的缺點,也給了剛才那位學生一個心理上的安慰,使他能更積極地投入到學習當中去。

教學倍數(shù)教學反思篇3

?3 的倍數(shù)的特征》本節(jié)課的教學活動,注重學生實踐操作,展開探究活動,組織學生進行交流和探討,注重培養(yǎng)學生發(fā)現(xiàn)問題,解決問題的能力,讓學生經(jīng)歷科學探索的過程,感受數(shù)學的嚴謹性和數(shù)學結(jié)論的正確性。我是從教學環(huán)節(jié)維度進行觀課的,本節(jié)課有五個環(huán)節(jié)包括:一、復習舊知,直接導入。二、自主探究,合作驗證。三、總結(jié)提升,共同驗證。四、運用結(jié)論,鞏固訓練。五、全課小結(jié),課后延伸。每個環(huán)節(jié)環(huán)環(huán)相扣,設計合理。下面就說一下自己的想法。

一、以舊帶新,引入新課。

趙老師先復習了2、5的倍數(shù)的特征,為這節(jié)課的學習打下了基礎。趙老師以學生原有認知為基礎,激發(fā)學生的探究欲望,利用學生剛學完“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的`特征”的問題中,由此萌發(fā)疑問,激發(fā)強烈的探究欲望,因此學生很快進入問題情境,猜測、否定、反思、觀察、討論,使得大部分學生漸漸進入了探究者的角色。

二、親身經(jīng)歷,探索規(guī)律。

本節(jié)課教師努力嘗試構(gòu)建數(shù)學生態(tài)課堂,讓學生繼續(xù)利用小棒擺一擺,進而發(fā)現(xiàn)不止是3根、6根小棒能擺出3的倍數(shù),9根也能“只要小棒的根數(shù)是3的倍數(shù),擺出來的數(shù)就是3的倍數(shù)。”教師將“動手擺小棒”升級為“腦中撥計數(shù)器”,將“直觀性思維”升華為“理性思維”,通過小組交流、集體驗證,學生的探索發(fā)現(xiàn)離“3的倍數(shù)的特征”只有咫尺之遙。整節(jié)課讓學生經(jīng)歷“動手操作——觀察發(fā)現(xiàn)——舉例驗證——歸納總結(jié)”的探究過程,實現(xiàn)課程、師生、知識等多層次的互動。

三、精心選題,鞏固新知。

習題的設計力爭在突出重點,突破難點,遵循學生認知規(guī)律的基礎上,體現(xiàn)基礎性、層次性、靈活性、生活性、趣味性。本節(jié)課教師設計了3道練習題。在鞏固練習部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數(shù)學與生活的聯(lián)系。把數(shù)學和生活有機聯(lián)系起來,使學生體會到數(shù)學在現(xiàn)實生活中作用和價值,初步學會用數(shù)學的眼光去觀察事物、思考問題,樹立學好數(shù)學、用好數(shù)學的志趣。

四、回顧梳理,舉一反。

在學生學習的過程中注意“學習方法”的指導,讓學生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個環(huán)節(jié)設計了讓學生靜靜的回顧這節(jié)課的學習歷程“動手操作——觀察發(fā)現(xiàn)——舉例驗證——歸納總結(jié)”,使其在數(shù)學思想上做進一步的提升。

教學倍數(shù)教學反思篇4

本節(jié)課的內(nèi)容是在學生已經(jīng)學習了一定的整數(shù)知識(包括整數(shù)的知識、整數(shù)的四則運算及其應用)的基礎上,進一步認識整數(shù)的性質(zhì)。本單元所涉及的因數(shù)和倍數(shù)都是初等數(shù)論的基礎知識。

成功之處:

1.理解分類標準,明確因數(shù)和倍數(shù)的含義。在例1教學中,首先根據(jù)不同的除法算式讓學生進行分類,同時思考其標準依據(jù)是什么。通過學生的獨立思考和小組交流學生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

2.厘清概念倍數(shù)和幾倍,注重強調(diào)倍數(shù)和因數(shù)的相互依存性。在教學中可以直接告訴學生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進行研究,它的研究范圍較之倍數(shù)范圍大一些。

不足之處:

1.練習設計容量少了一些,導致課堂有剩余時間。

2. 對因數(shù)和倍數(shù)的含義還應該進行歸納總結(jié)上升到用字母來表示。

再教設計:

1.根據(jù)課本的練習相應的進行補充。

2.因數(shù)和倍數(shù)的含義用總結(jié)為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。

教學倍數(shù)教學反思篇5

去年教學《公倍數(shù)和公因數(shù)》這一單元時,依照學生預習、閱讀課本進行教學,老師沒有作過多的講解,從學生的練習反饋中,部分學生求兩個數(shù)的最大公因數(shù)和最小公倍數(shù)錯誤百出,反思教學后,覺得用課本上列舉的方法,真的很難一下子準確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學生寫80,25和50的最大公因數(shù)有學生寫5?!{(diào)查詢問學生找兩個數(shù)公倍數(shù)和最小公倍數(shù),或者兩個數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說“太麻煩了”。

今年教學《公倍數(shù)和公因數(shù)》這一單元時,我在去年教學《公倍數(shù)和公因數(shù)》的基礎上作了一些改進:

一、仍然是將預習前置。

二、動手操作,想象延伸。

讓學生動手操作,提高感知效果,幫助學生形成豐富的表象,是促進形象思維發(fā)展的有利途徑。例題教學中讓學生動手鋪,鋪后想,想后算,算后思。

用長3厘米、寬2厘米的長方形紙片分別鋪邊長6厘米、8厘米的正方形,能鋪滿哪個正方形?拿出手中的圖形,動手拼一拼。

學生分組操作,用除法算式把不同的擺法寫出來。

提問:通過剛才的活動,你們發(fā)現(xiàn)了什么?

以直觀的操作活動,在具體的問題情境中體會公倍數(shù)和公因數(shù)與生活的聯(lián)系,讓學生經(jīng)歷公倍數(shù)和公因數(shù)概念的形成過程,加深對抽象概念的理解。

思考:根據(jù)剛才鋪正方形的過程,在頭腦里想一想,用3厘米、寬2厘米的長方形紙片正好鋪滿邊長多少厘米的正方形?在小組里交流。

三、在教學中嚴格要求學生先用“列舉法”教學“求兩數(shù)公倍數(shù)與公因數(shù)”;在學生相對較熟練的時候嘗試讓學生直接說出公倍數(shù)與公因數(shù);在此基礎上適當介紹后面的閱讀知識,但不要求學生使用。

四、在教學了用“列舉法”“求兩數(shù)公倍數(shù)與公因數(shù)”的知識之后,適當提高訓練難度,將求“最小公倍數(shù)”與“最大公因數(shù)”合并訓練。通過聯(lián)系“最大公因數(shù)”、“最小公倍數(shù)”的知識,引導學生發(fā)現(xiàn)求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)的擴倍法等其它的方法。要求學生根據(jù)情況,用自己喜歡的方法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學生結(jié)合題目中兩個數(shù)的特點,自主選擇方法的空間,學生比較喜歡,掌握較好。通過練習引導學生感悟、概括出了一些特殊情況:(1)兩個數(shù)是倍數(shù)關(guān)系的,這兩個數(shù)的最小公倍數(shù)是其中較大的一個數(shù),最大公因數(shù)是其中較小的一個數(shù);(2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(“互質(zhì)數(shù)”這個概念學生沒有學到):①兩個不同的素數(shù);②兩個連續(xù)的自然數(shù);③1和任何自然數(shù)。

課后反思:

一、預習后的課堂教學,還要教,直接放手要出問題。

二、介紹一下短除法是有必要的。但不能直接按傳統(tǒng)的教學思路以短除法求最大公因數(shù)和最小公倍數(shù)簡單代替列舉法。

三、應逐步鼓勵學生把求最大公因數(shù)和最小公倍數(shù)過程想在腦中,直接說出結(jié)果。引導感興趣的同學在課后探索其它的求最大公因數(shù)和最小公倍數(shù)的內(nèi)容,適當提高學生的思維水平。

教學倍數(shù)教學反思篇6

在上節(jié)課的學習中,對于如何點亮小燈泡,學生已獲得了一定的經(jīng)驗。在這節(jié)課中主要是使學生學會使用新的裝置——小燈座和電池盒,用導線連接完整的電路。并在使用這些裝置建立電路和探索更多小燈泡亮起來的過程中,學生將獲得更多地建立電路的經(jīng)驗。

根據(jù)這樣的理念,我在教學設計過程中,采取了循序漸進,由易到難的教學方法,首先讓學生設計組裝點亮一個小燈泡的電路,掌握電池盒、小燈座和導線的安裝和連接方法,畫出簡單的線路圖,形成一個簡單電路的概念。但是由于學具袋中的學具質(zhì)量不是很好,導致很多學生在安裝小燈座和電池盒時,時間用去了一大半,而且個別小組沒有成功安裝好,因為有些材料被折斷了。后來讓學生點亮一個小燈泡,并畫出簡單電路圖時,大部分學生顯得很是困難,大部分的注意力集中在玩上面,根本沒有按著教師的要求去做。個別畫出來的電路圖也是不準確的,導線沒有畫直,小燈泡畫得不準確,電池盒也畫出來。沒有真正形成簡單電路的概念,所以我只好臨時改變教學流程,將下面的內(nèi)容安排在下節(jié)課。

今天我承接上節(jié)課留下來的內(nèi)容又上了一堂課,指導老師也來聽我的課??偢杏X整個教學流程不是很好,學生方應慢、交流部積極;而且對于上節(jié)課的知識學生掌握的不是很到位。存在的主要問題:1、指導組裝用電器時,注意點強調(diào)未到位,使個別實驗組在安裝電路時小燈泡沒有亮,未找出原因。2、學生在用不同的方法使多個小燈泡發(fā)亮的實驗操作后,才展示其中一組連接的實物圖,這并不能代表全班學生的做法,太過局限。學生的電路圖畫的不規(guī)范,沒能及時的糾正。

所以在進一步引導學生探究怎樣用不同的方法,讓更多的小燈泡亮起來時,他們實驗的很慢,顯得交流的時間很緊迫。后來指導老師給了我一些意見:1、不要讓一個小組中的一個學生來畫電路圖,讓他們先都畫著實是看,在讓他們動手做實驗;或者是讓完成好的小組立刻上黑板畫出電路圖,接著跟大家一起交流畫出來的那些連接方法是相同的,哪些方法是不同的,并指出不同在哪里,讓學生對串聯(lián)電路和并聯(lián)電路有個初步的了解。同時也可使學生意識到使兩只小燈泡亮起來可以有兩種方法,并讓學生嘗試去試試第二種方法。

教學倍數(shù)教學反思篇7

3的倍數(shù)的特征比較隱蔽,學生一般想不到從“各位上數(shù)的和”去研究。上課開始先讓學生回顧舊知:2的倍數(shù)和5的倍數(shù)有什么特征?學生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順利地設下了陷阱:“同學們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學思考方法,讓學生猜測3的倍數(shù)有什么特征,能較好地調(diào)動學生的學習積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學生很自然猜測到“個位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學生猜測“個位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點應該說是了不起的。本課到這里都很順利,因為完全在我的預設之中。

下面進入驗證環(huán)節(jié),先讓學生判斷自己的學號是不是3的倍數(shù),再在這些學號中挑出個位上是0,3,6,9的數(shù),通過交流,學生發(fā)現(xiàn)這些數(shù)不一定是3的倍數(shù)。學生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關(guān)系呢?于是進入到動手操作環(huán)節(jié)。在此基礎上,抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。

“試一試”是數(shù)學的第三步,如果一個數(shù)不是3的倍數(shù),那么這個數(shù)各位數(shù)的和不是3的倍數(shù),利用反例進一步證實3的倍數(shù)的特征,體現(xiàn)了數(shù)學的嚴謹性和數(shù)學結(jié)論的確定性。隨后設計了一系列習題,使學生得到鞏固提高。

教學倍數(shù)教學反思篇8

一、教材與知識點的對比與區(qū)別。

1、對比新版教材知識設置與傳統(tǒng)教材的區(qū)別。

有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學內(nèi)容,但教材在傳承以往優(yōu)秀做法的同時也進行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分,還是從微觀方面——具體內(nèi)容的設計上都獨具匠心。“因數(shù)與倍數(shù)”的認識與原教材有以下兩方面的區(qū)別:

(1)新課標教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學習,而是反其道而行之,通過乘法算式來導入新知。

(2)“約數(shù)”一詞被“因數(shù)”所取代。

這樣的變化原因何在?教師必須要認真研讀教材,深入了解編者意圖,才能夠正確、靈活駕馭教材。因此,我通過學習教參了解到以下信息:

學生的原有知識基礎是在已經(jīng)能夠區(qū)分整除與余數(shù)除法,對整除的含義有比較清楚的認識,不出現(xiàn)整除的定義并不會對學生理解其他概念產(chǎn)生任何影響。因此,本教材中刪去了“整除”的`數(shù)學化定義。

2、相似概念的對比。

(1)彼“因數(shù)”非此“因數(shù)”。

在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù)。而后者是相對于“倍數(shù)”而言的,與以前所說的“約數(shù)”同義,說“x是x的因數(shù)”時,兩者都只能是整數(shù)。

(2)“倍數(shù)”與“倍”的區(qū)別。

“倍”的概念比“倍數(shù)”要廣。我們可以說“1.5是0.3的5倍”,但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時,運用的方法與“求一個數(shù)的幾倍是多少”是相同的,只是這里的“幾倍”都是指整數(shù)倍。

二、教法的運用實踐

1、“因數(shù)與倍數(shù)”概念的數(shù)的應用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍,因此,對于學生和第一接觸的印象是沒有什么可以探究和探索的要求,而且給學生一個直觀的感受。“因數(shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無關(guān),與分數(shù)無關(guān),與負數(shù)無關(guān)(雖沒學,但有小部分學生了解)。同時強調(diào)——非0——因為0乘任何數(shù)得0,0除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學當中規(guī)定性的概念用直接講述法,讓學生清晰明確。因此,用直接導入法,先復習自然數(shù)的概念,再寫出乘法算式3*4=12,說明在這個算式中,3和4是12的因數(shù),12是3和4的倍數(shù)。

2、在進行延續(xù)性教學中,可以讓學生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù),在板書要講究一個格式與對稱性,這樣在對學生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比,再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。一個數(shù)的倍數(shù)的最小的倍數(shù)是它本身,而沒有最大的倍數(shù)。這些都是上課時應該要注意的細節(jié),這對于學生良好的學習慣的培養(yǎng)也是很重要的。