找最大公因數(shù)的教學(xué)反思8篇

時(shí)間:2022-12-10 作者:Anonyme 教學(xué)計(jì)劃

作為一名教師首先你要明白什么是教學(xué)反思,寫一篇高質(zhì)量的教學(xué)反思對(duì)我們今后的教學(xué)工作有很大幫助,下面是范文社小編為您分享的找最大公因數(shù)的教學(xué)反思8篇,感謝您的參閱。

找最大公因數(shù)的教學(xué)反思8篇

找最大公因數(shù)的教學(xué)反思篇1

本節(jié)課的教學(xué)內(nèi)容是求兩個(gè)數(shù)的公因數(shù)和兩個(gè)數(shù)的最大公因數(shù)的第二課時(shí)。教學(xué)目標(biāo)是進(jìn)一步理解兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)的意義,比較熟練地求出兩個(gè)數(shù)的最大公因數(shù),包括兩種特殊情況。這節(jié)課上的非常順利,課堂氣氛活躍,師生互動(dòng)和諧,取得了較好的課堂教學(xué)效果。

上課的第一環(huán)節(jié),是復(fù)習(xí)兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)的意義。在復(fù)習(xí)的過(guò)程中,我不是單純地讓學(xué)生復(fù)述兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)的意義,而是讓學(xué)生舉例說(shuō)明。學(xué)生說(shuō)出了許多組數(shù),找出了它們的公因數(shù)和最大公因數(shù)。在學(xué)生舉例的過(guò)程中,對(duì)它們的意義有了更深的理解。我擇其四組板書在黑板上:4和5,5和6,5和7,7和9。讓學(xué)生觀察,這四組數(shù)有什么特點(diǎn)。我的本意是讓學(xué)生發(fā)現(xiàn)兩個(gè)數(shù)的最大公因數(shù)的一種特殊情況,即兩個(gè)數(shù)的公因數(shù)只有1,那么它們的最大公因數(shù)就是1。 “我發(fā)現(xiàn)兩個(gè)數(shù)中只要有一個(gè)質(zhì)數(shù),它們的最大公因數(shù)就是1。”這是一個(gè)大膽的猜測(cè),雖說(shuō)是出乎意料,但更使課堂充滿了生機(jī)。我讓學(xué)生判斷他的觀點(diǎn)是否正確。在小組討論的過(guò)程中,有學(xué)生提出了質(zhì)疑,“這個(gè)觀點(diǎn)不對(duì),比如2和4,2是質(zhì)數(shù),但它倆的最大公因數(shù)不是1。”又有學(xué)生提出3和6,5和10等。我接著又讓學(xué)生觀察,這幾組數(shù)又有什么特點(diǎn)。通過(guò)通論觀察,完成了本節(jié)課的另一個(gè)教學(xué)任務(wù),發(fā)現(xiàn)了兩個(gè)數(shù)的最大公因數(shù)的另一種特殊情況,即兩個(gè)數(shù)是倍數(shù)關(guān)系,那么它們的最大公因數(shù)就是較小的數(shù),學(xué)生發(fā)現(xiàn)了兩個(gè)數(shù)的最大公因數(shù)的幾種情況,當(dāng)兩個(gè)數(shù)都是質(zhì)數(shù)時(shí),它們的最大公因數(shù)是1;當(dāng)兩個(gè)數(shù)是連續(xù)的自然數(shù)時(shí),它們的最大公因數(shù)是1;兩個(gè)數(shù)的最大公因數(shù)是1,這兩個(gè)數(shù)可以是質(zhì)數(shù),也可以是合數(shù),還可以一個(gè)是質(zhì)數(shù),一個(gè)是合數(shù),等等。

找最大公因數(shù)的教學(xué)反思篇2

本課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進(jìn)行教學(xué),通過(guò)找公因數(shù)的過(guò)程,讓學(xué)生懂得找公因數(shù)的基本方法。在此基礎(chǔ)上,引出公因數(shù)和最大公因數(shù)的概念,為了加深理解,可以進(jìn)一步引導(dǎo)學(xué)生觀察分析、討論,讓學(xué)生明確找兩個(gè)數(shù)公因數(shù)的方法,并對(duì)找有特征的數(shù)字的最大公因數(shù)的特殊方法有所體驗(yàn)。在此過(guò)程中要注意鼓勵(lì)每一個(gè)學(xué)生參與探索,重視引發(fā)學(xué)生思考,注重學(xué)生間的交流,讓學(xué)生用自己的語(yǔ)言表述自己的發(fā)現(xiàn),但不要?dú)w納成固定的模式讓學(xué)生記憶。對(duì)于找公因數(shù)有困難的學(xué)生,教師要從方法上作進(jìn)一步指導(dǎo)。《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者?!痹诒竟?jié)課中,我努力將找最大公因數(shù)的概念教學(xué)課,設(shè)計(jì)成為學(xué)生探索問(wèn)題,解決問(wèn)題的過(guò)程,這樣設(shè)計(jì)各個(gè)環(huán)節(jié)的教學(xué)流程,體現(xiàn)了教師是組織者——提供數(shù)學(xué)學(xué)習(xí)的材料;引導(dǎo)者——引導(dǎo)學(xué)生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學(xué)生共同探討規(guī)律。在整個(gè)教學(xué)的過(guò)程中,學(xué)生真正成了課堂學(xué)習(xí)的主人,尋找最大公因數(shù)的方法是通過(guò)學(xué)生積極主動(dòng)地探索以及不斷地中驗(yàn)證得到的,所以整節(jié)課學(xué)生個(gè)性得到發(fā)揮,課堂成了學(xué)習(xí)的天地。

找最大公因數(shù)的教學(xué)反思篇3

教學(xué) 例3時(shí)先用邊長(zhǎng)6厘米和4厘米的正方形紙片,分別鋪長(zhǎng)18厘米、寬12厘米的長(zhǎng)方形,教師選擇正方形紙片鋪長(zhǎng)方形的活動(dòng)教學(xué)公因數(shù),是因?yàn)檫@一活動(dòng)能吸引學(xué)生發(fā)現(xiàn)和提出問(wèn)題,能引導(dǎo)學(xué)生思考。學(xué)生用同兩張正方形紙片分別鋪一個(gè)不同的長(zhǎng)方形,面對(duì)出現(xiàn)的兩種結(jié)果,會(huì)發(fā)現(xiàn)“為什么有時(shí)正好鋪滿、有時(shí)不能”,“什么時(shí)候正好鋪滿、什么時(shí)候不能”這些有研究?jī)r(jià)值的問(wèn)題。他們沿著長(zhǎng)方形的邊鋪正方形紙片,就會(huì)想到正好鋪滿與不能正好鋪滿的原因可能和邊長(zhǎng)有關(guān),于是產(chǎn)生進(jìn)一步研究長(zhǎng)方形邊長(zhǎng)和正方形邊長(zhǎng)關(guān)系的愿望。分析長(zhǎng)方形的長(zhǎng)、寬和正方形邊長(zhǎng)之間的關(guān)系,按學(xué)生的認(rèn)知規(guī)律,設(shè)計(jì)成兩個(gè)層次: 第一個(gè)層次聯(lián)系鋪的過(guò)程與結(jié)果,從長(zhǎng)方形的長(zhǎng)、寬除以正方形的邊長(zhǎng)沒(méi)有余數(shù)和有余數(shù)的層面上,體會(huì)正好鋪滿與不能正好鋪滿的原因。第二個(gè)層次根據(jù)邊長(zhǎng)6厘米的正方形正好鋪滿長(zhǎng)18厘米、寬12厘米的長(zhǎng)方形、而邊長(zhǎng)4厘米的正方形不能正好鋪滿長(zhǎng)18厘米、寬12厘米的長(zhǎng)方形的經(jīng)驗(yàn),聯(lián)想邊長(zhǎng)幾厘米的正方形還能正好鋪滿長(zhǎng)18厘米、寬12厘米的長(zhǎng)方形。先找到這些正方形,把它們邊長(zhǎng)從小到大排列,知道這樣的正方形的個(gè)數(shù)是有限的。再用“既是12的因數(shù),又是18的因數(shù)”概括地描述這些正方形邊長(zhǎng)的特征。顯然,前一層次形象思維的成分較大,思考難度較小,對(duì)后一層次的抽象認(rèn)識(shí)有重要的支持作用。

反思:突出概念的內(nèi)涵、外延,讓學(xué)生準(zhǔn)確理解概念。

我用“既是……又是……”的描述,讓學(xué)生理解“公有”的意思。例3先聯(lián)系用邊長(zhǎng)1、2、3、6厘米的正方形正好能鋪滿長(zhǎng)18厘米、寬12厘米的長(zhǎng)方形紙片的現(xiàn)象,從長(zhǎng)方形的長(zhǎng)、寬分別除以正方形邊長(zhǎng)都沒(méi)有余數(shù),得出正方形的邊長(zhǎng)“既是12的因數(shù),又是18的因數(shù)”,一方面概括了這些正方形邊長(zhǎng)的特點(diǎn),另一方面讓學(xué)生體會(huì)“既是……又是……”的意思。然后進(jìn)一步概括 “1、2、3、6既是12的因數(shù),又是18的因數(shù),它們是12和18的公因數(shù)”,形成公因數(shù)的概念。

由于知識(shí)的遷移,學(xué)生很容易想到用集合圖直觀形象地顯示公因數(shù)的含義。第27頁(yè)把8的因數(shù)和12的因數(shù)分別寫到兩個(gè)集合圈里,這兩個(gè)集合圈有一部分重疊,在重疊部分里寫的數(shù)既是8的因數(shù),也是12的因數(shù),是8和12的公因數(shù)。先觀察這個(gè)集合圖,再填寫第28頁(yè)的集合圖,學(xué)生能進(jìn)一步體會(huì)公因數(shù)的含義。概念的外延是指這個(gè)概念包括的一切對(duì)象。

運(yùn)用數(shù)學(xué)概念,讓學(xué)生探索找兩個(gè)數(shù)的最大公因數(shù)的方法。

例4教學(xué)求兩個(gè)數(shù)的最大公因數(shù),出現(xiàn)了兩種解決問(wèn)題的方法。學(xué)生有的先分別寫出8和12的因數(shù),再找出它們的公因數(shù)和最大公因數(shù)。有的在8的因數(shù)里找12的因數(shù),這樣操作比較方便,但容易遺漏。我有意引導(dǎo)學(xué)生選擇第一種。練習(xí)五的第3題就是這種方法的應(yīng)用。

充分利用教育資源,自制課件,協(xié)助教學(xué)。

限于操作的局部性,我認(rèn)真制作了實(shí)用的課件,讓直觀、清晰的頁(yè)面直接輔助我教學(xué),學(xué)生表現(xiàn)積極,課堂氣氛比較活躍,提問(wèn)、釋疑、解惑,練習(xí)的熱情很高。

本課設(shè)計(jì)目的是使學(xué)生學(xué)習(xí)公因數(shù)、最大公因數(shù)的意義,并學(xué)會(huì)找兩個(gè)數(shù)的最大公因數(shù)的方法,從整節(jié)課學(xué)生表現(xiàn)情況和課后作業(yè)反饋來(lái)看,學(xué)生對(duì)本部分知識(shí)知識(shí)掌握較好,學(xué)習(xí)積極并具有熱情,就實(shí)效性講很令人滿意。

找最大公因數(shù)的教學(xué)反思篇4

公因數(shù)和最大公因數(shù)這一課應(yīng)注重引導(dǎo)學(xué)生體驗(yàn)“概念形成”的過(guò)程,讓學(xué)生“研究學(xué)習(xí)”、“自主探索”,學(xué)生不應(yīng)是被動(dòng)接受知識(shí)的容器,而應(yīng)是在學(xué)習(xí)過(guò)程中主動(dòng)積極的`參與者,是認(rèn)知過(guò)程的探索者,是學(xué)習(xí)活動(dòng)的主體。

我是這樣組織教學(xué)的:

在教學(xué)過(guò)程中,我們不僅要求學(xué)生掌握抽象的數(shù)學(xué)結(jié)論,更應(yīng)注重學(xué)生概念形成的過(guò)程。應(yīng)引導(dǎo)學(xué)生參與探討知識(shí)的形成過(guò)程,盡可能挖掘?qū)W生潛能,能讓學(xué)生通過(guò)努力,自己解決問(wèn)題,形成概念。通過(guò)創(chuàng)設(shè)生活情境,幫助王叔叔鋪地裝,將學(xué)生自然地帶入求知的情境中去,在學(xué)生已有知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上放手讓學(xué)生去交流、探索。“哪一個(gè)正方形紙片能正好鋪滿長(zhǎng)16厘米寬12厘米的長(zhǎng)方形,為什么?”這樣更利于培養(yǎng)學(xué)生自主探索、提出問(wèn)題和解決問(wèn)題的能力。接著進(jìn)一步引導(dǎo)學(xué)生思考“還有哪些正方形紙片也能正好鋪滿長(zhǎng)16厘米寬12厘米的長(zhǎng)方形?”“為什么邊長(zhǎng)是1厘米、2厘米、4厘米的地磚可以正好鋪滿?而邊長(zhǎng)是3厘米的正方形地磚不能正好鋪滿?”讓學(xué)生在反復(fù)地思考和交流中加深對(duì)公因數(shù)這一概念的理解。

教師拋出問(wèn)題后,讓學(xué)生獨(dú)立探究。為了解決問(wèn)題,學(xué)生充分調(diào)動(dòng)了已有知識(shí)經(jīng)驗(yàn)、方法、技能,找出“16和12的公因數(shù)和最大公因數(shù)”。在這個(gè)過(guò)程中,由學(xué)生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動(dòng)探索知識(shí)的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識(shí)。

思考:

1.增強(qiáng)師生和生生之間的互動(dòng)

在教學(xué)過(guò)程中各個(gè)環(huán)節(jié)的銜接不夠緊湊,本課時(shí)的教學(xué)內(nèi)容比較枯燥,在課堂上如何調(diào)動(dòng)學(xué)生的積極性,活躍課堂氣氛,使學(xué)生學(xué)的輕松、扎實(shí)。今后的教學(xué)中,在這一點(diǎn)上要都多下功夫。本課時(shí)的教學(xué)中,在組織學(xué)生交流找“16和12的公因數(shù)”的方法時(shí),指名回答的形式過(guò)于單調(diào),有的同學(xué)沒(méi)有選著擺一擺的方法,而是直接用邊長(zhǎng)去除以小正方形邊長(zhǎng)來(lái)判斷,我沒(méi)有很好利用學(xué)生生成的資源,幫助學(xué)生理解,局限學(xué)生的思維發(fā)展。

2.方法多樣化和方法優(yōu)化

在組織學(xué)生進(jìn)行交流時(shí),應(yīng)該注重引導(dǎo)學(xué)生有層次地介紹各種不同的方法。同時(shí)還要引導(dǎo)學(xué)生進(jìn)行方法的比較和優(yōu)化。

找最大公因數(shù)的教學(xué)反思篇5

這節(jié)課是在學(xué)習(xí)了公因數(shù)和最大公因數(shù)之后教學(xué)的,在實(shí)際教學(xué)中我發(fā)現(xiàn)學(xué)生不能靈活利用最大公因數(shù)的知識(shí)解決實(shí)際問(wèn)題,有的同學(xué)一看到求最大、最多、最長(zhǎng)是多少,便不假思索,直接求它們的最大公因數(shù),至于為什么是求最大公因數(shù),有的同學(xué)不理解,或是知其然而不知其所以然?;诖?,我設(shè)計(jì)了這節(jié)課。在教學(xué)中,我努力做大了以下幾點(diǎn):

1、借助操作活動(dòng),讓學(xué)生形成解決問(wèn)題的策略。在教學(xué)中,我以學(xué)生感興趣的六一節(jié)活動(dòng)貫穿始終,讓學(xué)生在積極、歡愉的氛圍中學(xué)習(xí)。通過(guò)給學(xué)生提供具體的材料,讓他們利用已有的材料,剪一剪、畫一畫、折一折、想一想、算一算,用不同的方法來(lái)解決問(wèn)題。從動(dòng)手操作中理解要解決這個(gè)問(wèn)題,實(shí)質(zhì)上是求已知數(shù)量的最大公因數(shù),并結(jié)合課件演示明確為什么是求最大公因數(shù)。提升了學(xué)生的思維層次。再通過(guò)后面的嘗試應(yīng)用,練一練,靈活應(yīng)用等環(huán)節(jié)進(jìn)一步明確思路。學(xué)生在解決問(wèn)題的過(guò)程中獲得感悟,初步形成解決此類問(wèn)題的策略。

2、預(yù)設(shè)探究過(guò)程,增強(qiáng)學(xué)生的主體意識(shí)。嘗試應(yīng)用環(huán)節(jié)更是學(xué)生自主探究的廣闊平臺(tái),我拋出問(wèn)題后讓學(xué)生獨(dú)立探究。為了解決問(wèn)題,學(xué)生充分調(diào)動(dòng)已有知識(shí)經(jīng)驗(yàn)、方法、技能,八仙過(guò)海各顯神通,找出各種求正方形的邊長(zhǎng)最長(zhǎng)是多少的方法,從中再次體驗(yàn)到要解決這個(gè)問(wèn)題實(shí)質(zhì)上還是求已知數(shù)量的最大公因數(shù)。整個(gè)教學(xué)過(guò)程學(xué)生能主動(dòng)的建構(gòu)知識(shí),而不是簡(jiǎn)單模仿,充分體現(xiàn)了學(xué)生是課堂學(xué)習(xí)的主人,課堂是學(xué)生學(xué)習(xí)的天地。

3、教學(xué)中我充分發(fā)揮小組合作學(xué)習(xí)能力,給學(xué)生充分的交流與研究時(shí)間,讓學(xué)生在交流展示中明確解決此類問(wèn)題的策略,達(dá)到把復(fù)雜的問(wèn)題變得簡(jiǎn)單,把簡(jiǎn)單的問(wèn)題變得有厚度。

找最大公因數(shù)的教學(xué)反思篇6

公因數(shù)與最大公因數(shù)這一課教材設(shè)計(jì)了一個(gè)用邊長(zhǎng)6厘米和4厘米正方形鋪長(zhǎng)18厘米,寬12厘米長(zhǎng)方形的問(wèn)題,讓學(xué)生在解決實(shí)際問(wèn)題中探索公因數(shù)的認(rèn)識(shí)。因此,在教學(xué)中要重視通過(guò)嘗試解決問(wèn)題讓學(xué)生聯(lián)系已有的知識(shí)來(lái)引入公因數(shù)的認(rèn)識(shí)。使學(xué)生初步體會(huì)學(xué)習(xí)公因數(shù)在解決實(shí)際問(wèn)題中有著重要作用。

這節(jié)課的上課情況感覺(jué)較好,課堂比較流暢,重難點(diǎn)也都注意到了,但是通過(guò)學(xué)生作業(yè)反饋情況來(lái)看,部分學(xué)生在尋找公因數(shù)和最大公因數(shù)時(shí),容易出現(xiàn)漏掉因數(shù)的情況,如9的因數(shù)容易漏掉因數(shù)3等。在寫公因數(shù)的示意圖時(shí),部分學(xué)生出現(xiàn)中間寫了公因數(shù)后,兩邊還是將所有因數(shù)都寫了進(jìn)去,這一情況在預(yù)設(shè)時(shí)我雖然想到了學(xué)生會(huì)錯(cuò),也在課堂上進(jìn)行了說(shuō)明,但是少數(shù)學(xué)生還是出現(xiàn)了錯(cuò)誤。

用例舉的策略找出所有公因數(shù)的教學(xué)中,教材上有種層次不同學(xué)生可以掌握的方法參考,在這里的教學(xué)中我只是參照教材注重了這兩種方法的講解,這里教材的應(yīng)是要求學(xué)生有序地列舉就行了,不同水平的學(xué)生采用的方法可以不一樣,因此,在這部分內(nèi)容的教學(xué)時(shí),有些學(xué)生運(yùn)用了一些比較獨(dú)特的方法尋找公因數(shù),教師應(yīng)該給予肯定,說(shuō)明只要有序地列舉出因數(shù)來(lái)尋找公因數(shù)就可以了。但是,對(duì)于學(xué)生出現(xiàn)的各種方法可以讓學(xué)生進(jìn)行對(duì)比,體會(huì)哪種方法更好,更適合自己,進(jìn)而對(duì)自己的算法進(jìn)行優(yōu)化。

找最大公因數(shù)的教學(xué)反思篇7

“因數(shù)和倍數(shù)”的知識(shí),向來(lái)是小學(xué)數(shù)學(xué)教學(xué)的難點(diǎn)。“最大公因數(shù)”這節(jié)課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進(jìn)行的,通過(guò)這節(jié)課的學(xué)習(xí),學(xué)生會(huì)說(shuō)出兩個(gè)數(shù)的公因數(shù)和最大公因數(shù),會(huì)求兩個(gè)數(shù)的最大公因數(shù),并為后面學(xué)習(xí)分?jǐn)?shù)的約分打好基礎(chǔ)。反思這節(jié)課我認(rèn)為有以下幾點(diǎn):

一、精心設(shè)計(jì)數(shù)學(xué)活動(dòng),讓學(xué)生大膽探究。

1、通過(guò)找8和12的因數(shù),引出公因數(shù)的概念。

教師引導(dǎo)學(xué)生先寫出8和12的因數(shù),再觀察發(fā)現(xiàn)8和12有公有的因數(shù),自然引出了公因數(shù)的概念。然后通過(guò)集合圈的形式,直觀呈現(xiàn)什么是公因數(shù),什么又是最大公因數(shù)。促進(jìn)學(xué)生建立”公因數(shù)和最大公因數(shù)”的概念。

2、通過(guò)找18和27的最大公因數(shù),掌握找最大公因數(shù)的方法。

掌握了公因數(shù)的概念之后,教師放手給予學(xué)生足夠的時(shí)間,讓學(xué)生自主探究找最大公因數(shù)的方法。交流反饋時(shí),考慮到中下水平的學(xué)生,教師只匯報(bào)了書本中的三種基本方法,并沒(méi)有提到短除法。

二、思路清晰,環(huán)環(huán)相扣。

本節(jié)課,教師從認(rèn)識(shí)公因數(shù)——理解最大公因數(shù)——探究找最大公因數(shù)的方法——相應(yīng)的練習(xí)鞏固這幾個(gè)環(huán)節(jié)入手,每個(gè)環(huán)節(jié)都是層層遞進(jìn),環(huán)環(huán)相扣,促進(jìn)了學(xué)生對(duì)概念的理解。

?數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者?!痹诒竟?jié)課中,我努力將找最大公因數(shù)的概念教學(xué)課,設(shè)計(jì)成為學(xué)生探索問(wèn)題,解決問(wèn)題的過(guò)程,各個(gè)環(huán)節(jié)的學(xué)習(xí)流程,體現(xiàn)了教師是組織者——提供數(shù)學(xué)學(xué)習(xí)的材料;引導(dǎo)者——引導(dǎo)學(xué)生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學(xué)生共同探討規(guī)律。在整個(gè)教學(xué)的過(guò)程中,學(xué)生真正成了課堂學(xué)習(xí)的主人,尋找最大公因數(shù)的方法是通過(guò)學(xué)生積極主動(dòng)地探索以及不斷地中驗(yàn)證得到的,所以整節(jié)課學(xué)生個(gè)性得到發(fā)揮。

找最大公因數(shù)的教學(xué)反思篇8

教材共提供了三種不同的方式求兩個(gè)數(shù)的最大公因數(shù),方法一:分別寫出兩個(gè)數(shù)的因數(shù),再找最大公因數(shù);方法二:先找出一個(gè)數(shù)的所有因數(shù),再看哪些因數(shù)是另一個(gè)數(shù)的因數(shù),最后從中找出最大的;方法三:用分解質(zhì)因數(shù)的方法找兩個(gè)數(shù)的最大公因數(shù)。我還給學(xué)生補(bǔ)充了用短除法求最大公因數(shù)。這么多方法,教師應(yīng)該向?qū)W生重點(diǎn)推薦哪種呢?教材中補(bǔ)充拓展的分解質(zhì)因數(shù)方法學(xué)生是否都應(yīng)掌握呢?短除法是否都應(yīng)掌握呢?方法一與方法二相比,由于第一種方法便于觀察比較,十分直觀。因此,在課堂教學(xué)中許多學(xué)生暗暗地就選擇了它。方法二與方法三相比,在數(shù)據(jù)偏大且因數(shù)較多時(shí),如果用分解質(zhì)因數(shù)的方法來(lái)求最大公因數(shù)不僅正確率高,而且速度也會(huì)大幅提高。但是用分解質(zhì)因數(shù)的方法來(lái)求最大公因數(shù)對(duì)一些學(xué)生來(lái)說(shuō)又有相當(dāng)?shù)碾y度,至于為什么要把兩個(gè)數(shù)全部公有的質(zhì)因數(shù)相乘,一些學(xué)生還不太明白。

在教學(xué)中,我認(rèn)為教師不能僅僅只是介紹,還有必要讓學(xué)生們掌握這種方法技能。用短除法求最大公因數(shù)我感覺(jué)比較簡(jiǎn)單,學(xué)生好接受,好理解。但是短除法求最大公因數(shù)一直要除到所得的商是互質(zhì)數(shù)時(shí)為止。如果用此法,學(xué)生必須首先認(rèn)識(shí)“互質(zhì)數(shù)”,并能正確判斷。雖然有關(guān)“互質(zhì)數(shù)”的內(nèi)容教材83頁(yè)“你知道嗎”中有所涉及,相應(yīng)知識(shí)的考查在練習(xí)十五第6題中也有所體現(xiàn)。至于學(xué)生選用哪種策略找兩個(gè)數(shù)的最大公因數(shù),我并不強(qiáng)求。從作業(yè)反饋情況來(lái)看,多數(shù)學(xué)生更喜歡方法一,但是我們要提醒學(xué)生養(yǎng)成先觀察數(shù)據(jù)特點(diǎn),然后再動(dòng)筆的習(xí)慣。如兩個(gè)數(shù)正好成倍數(shù)關(guān)系或互質(zhì)數(shù)關(guān)系時(shí),許多學(xué)生仍舊按部就班地采用一般策略來(lái)解決,全班只有少數(shù)的學(xué)生能夠根據(jù)“當(dāng)兩個(gè)數(shù)成倍數(shù)關(guān)系時(shí),較小數(shù)就是它們的最大公因數(shù)”的規(guī)律快速找到最大公因數(shù)。在這一方面,教師在教學(xué)中要率先垂范,做好榜樣。在鞏固練習(xí)過(guò)程中,也應(yīng)加強(qiáng)訓(xùn)練,每次動(dòng)筆練習(xí)之前補(bǔ)充一個(gè)環(huán)節(jié)——觀察與思考。使學(xué)生除了掌握基本策略方法外,還能靈活快捷地求出一些特例來(lái)。

這節(jié)課本來(lái)想把教材練習(xí)十五的習(xí)題講解完,但是時(shí)間不夠用了,只好下節(jié)課再講。