高中數(shù)學教案模板范文5篇

時間:2023-10-27 作者:Youaremine 備課教案

老師借助教案可以恰當?shù)剡x擇和運用教學方法,提前準備好教案,我們的教學質(zhì)量就會得到提高,下面是范文社小編為您分享的高中數(shù)學教案模板范文5篇,感謝您的參閱。

高中數(shù)學教案模板范文5篇

高中數(shù)學教案模板范文篇1

一、課程性質(zhì)與任務(wù)

數(shù)學是研究空間形式和數(shù)量關(guān)系的科學,是科學和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。

數(shù)學課程是中等職業(yè)學校學生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學生掌握必要的數(shù)學基礎(chǔ)知識,具備必需的相關(guān)技能與能力,為學習專業(yè)知識、掌握職業(yè)技能、繼續(xù)學習和終身發(fā)展奠定基礎(chǔ)。

二、課程教學目標

1.在九年義務(wù)教育基礎(chǔ)上,使學生進一步學習并掌握職業(yè)崗位和生活中所必要的數(shù)學基礎(chǔ)知識。

2.培養(yǎng)學生的計算技能、計算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學思維能力。

3.引導學生逐步養(yǎng)成良好的學習習慣、實踐意識、創(chuàng)新意識和實事求是的科學態(tài)度,提高學生就業(yè)能力與創(chuàng)業(yè)能力。

三、教學內(nèi)容結(jié)構(gòu)

本課程的教學內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個部分構(gòu)成。

1.基礎(chǔ)模塊是各專業(yè)學生必修的基礎(chǔ)性內(nèi)容和應(yīng)達到的基本要求,教學時數(shù)為128學時。

2.職業(yè)模塊是適應(yīng)學生學習相關(guān)專業(yè)需要的限定選修內(nèi)容,各學校根據(jù)實際情況進行選擇和安排教學,教學時數(shù)為32~64學時。

3.拓展模塊是滿足學生個性發(fā)展和繼續(xù)學習需要的任意選修內(nèi)容,教學時數(shù)不做統(tǒng)一規(guī)定。

四、教學內(nèi)容與要求

(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)

了解:初步知道知識的含義及其簡單應(yīng)用。

理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其它相關(guān)知識的聯(lián)系。掌握:能夠應(yīng)用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項技能與四項能力)

計算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數(shù)學工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。

空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。

分析與解決問題能力:能對工作和生活中的簡單數(shù)學相關(guān)問題,作出分析并運用適當?shù)臄?shù)學方法予以解決。

數(shù)學思維能力:依據(jù)所學的數(shù)學知識,運用類比、歸納、綜合等方法,對數(shù)學及其應(yīng)用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。

(二)教學內(nèi)容與要求1.基礎(chǔ)模塊(128學時)

第1單元集合(10學時)

第2單元不等式(8學時)

第6單元數(shù)列(10學時)

第7單元平面向量(矢量)(10學時)

第8單元直線和圓的方程(18學時)

第10單元概率與統(tǒng)計初步(16學時)

2.職業(yè)模塊

第2單元坐標變換與參數(shù)方程(12學時)

高中數(shù)學教案模板范文篇2

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;

(3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);

(4)會分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學生的抽象能力和邏輯思維能力;

(5)通過對排列應(yīng)用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學生嚴謹?shù)膶W習態(tài)度。

教學建議

一、知識結(jié)構(gòu)

二、重點難點分析

本小節(jié)的重點是排列的定義、排列數(shù)及排列數(shù)的公式,并運用這個公式去解決有關(guān)排列數(shù)的應(yīng)用問題.難點是導出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題.突破重點、難點的關(guān)鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應(yīng)用問題當中.

從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列.因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同.排列數(shù)是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計算相應(yīng)的排列數(shù).排列與排列數(shù)是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數(shù).從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數(shù),就是相應(yīng)的排列數(shù).

公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.要重點分析好 的推導.

排列的應(yīng)用題是本節(jié)教材的難點,通過本節(jié)例題的分析,應(yīng)注意培養(yǎng)學生解決應(yīng)用問題的能力.

在分析應(yīng)用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數(shù),這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應(yīng)盡量采用.

在教學排列應(yīng)用題時,開始應(yīng)要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數(shù),這樣可以培養(yǎng)學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求.

三、教法建議

①在講解排列數(shù)的概念時,要注意區(qū)分“排列數(shù)”與“一個排列”這兩個概念.一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數(shù),而是具體的一件事;排列數(shù)是指“從n個不同元素中取出m個元素的所有排列的個數(shù)”,它是一個數(shù).例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個排列,共有6種,而數(shù)字6就是排列數(shù),符號 表示排列數(shù).

②排列的定義中包含兩個基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”.

從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列.

在定義中“一定順序”就是說與位置有關(guān),在實際問題中,要由具體問題的性質(zhì)和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區(qū)別.

在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時叫全排列.

要特別注意,不加特殊說明,本章不研究重復排列問題.

③關(guān)于排列數(shù)公式的推導的教學.公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.課本上用的是不完全歸納法,先推導 , ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的.

導出公式 后要分析這個公式的構(gòu)成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯.這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數(shù)是n,后面每個因數(shù)都比它前面一個因數(shù)少1,最后一個因數(shù)是 ,共m個因數(shù)相乘.”這實際是講三個特點:第一個因數(shù)是什么?最后一個因數(shù)是什么?一共有多少個連續(xù)的自然數(shù)相乘.

公式 是在引出全排列數(shù)公式 后,將排列數(shù)公式變形后得到的公式.對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數(shù)的值,常用前一個公式,而要對含有字母的排列數(shù)的式子進行變形或作有關(guān)的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在 時也能成立,規(guī)定 ,如同 時 一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋.

④建議應(yīng)充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解.

⑤學生在開始做排列應(yīng)用題的作業(yè)時,應(yīng)要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學生得更加扎實.隨著學生解題熟練程度的提高,可以逐步降低這種要求.

高中數(shù)學教案模板范文篇3

教學目標:

1、理解并掌握曲線在某一點處的切線的概念;

2、理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;

3、理解切線概念實際背景,培養(yǎng)學生解決實際問題的能力和培養(yǎng)學生轉(zhuǎn)化

問題的能力及數(shù)形結(jié)合思想。

教學重點:

理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法。

教學難點:

用“無限逼近”、“局部以直代曲”的思想理解某一點處切線的斜率。

教學過程:

一、問題情境

1、問題情境。

如何精確地刻畫曲線上某一點處的變化趨勢呢?

如果將點p附近的曲線放大,那么就會發(fā)現(xiàn),曲線在點p附近看上去有點像是直線。

如果將點p附近的曲線再放大,那么就會發(fā)現(xiàn),曲線在點p附近看上去幾乎成了直線。事實上,如果繼續(xù)放大,那么曲線在點p附近將逼近一條確定的直線,該直線是經(jīng)過點p的所有直線中最逼近曲線的一條直線。

因此,在點p附近我們可以用這條直線來代替曲線,也就是說,點p附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。

2、探究活動。

如圖所示,直線l1,l2為經(jīng)過曲線上一點p的兩條直線,

(1)試判斷哪一條直線在點p附近更加逼近曲線;

(2)在點p附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?

(3)在點p附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?

二、建構(gòu)數(shù)學

切線定義: 如圖,設(shè)q為曲線c上不同于p的一點,直線pq稱為曲線的割線。 隨著點q沿曲線c向點p運動,割線pq在點p附近逼近曲線c,當點q無限逼近點p時,直線pq最終就成為經(jīng)過點p處最逼近曲線的直線l,這條直線l也稱為曲線在點p處的切線。這種方法叫割線逼近切線。

思考:如上圖,p為已知曲線c上的一點,如何求出點p處的切線方程?

三、數(shù)學運用

例1 試求在點(2,4)處的切線斜率。

解法一 分析:設(shè)p(2,4),q(xq,f(xq)),

則割線pq的斜率為:

當q沿曲線逼近點p時,割線pq逼近點p處的切線,從而割線斜率逼近切線斜率;

當q點橫坐標無限趨近于p點橫坐標時,即xq無限趨近于2時,kpq無限趨近于常數(shù)4。

從而曲線f(x)=x2在點(2,4)處的切線斜率為4。

解法二 設(shè)p(2,4),q(xq,xq2),則割線pq的斜率為:

當?x無限趨近于0時,kpq無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(2,4)處的切線斜率為4。

練習 試求在x=1處的切線斜率。

解:設(shè)p(1,2),q(1+Δx,(1+Δx)2+1),則割線pq的斜率為:

當?x無限趨近于0時,kpq無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。

小結(jié) 求曲線上一點處的切線斜率的一般步驟:

(1)找到定點p的坐標,設(shè)出動點q的坐標;

(2)求出割線pq的斜率;

(3)當時,割線逼近切線,那么割線斜率逼近切線斜率。

思考 如上圖,p為已知曲線c上的一點,如何求出點p處的切線方程?

解 設(shè)

所以,當無限趨近于0時,無限趨近于點處的切線的斜率。

變式訓練

1。已知,求曲線在處的切線斜率和切線方程;

2。已知,求曲線在處的切線斜率和切線方程;

3。已知,求曲線在處的切線斜率和切線方程。

課堂練習

已知,求曲線在處的切線斜率和切線方程。

四、回顧小結(jié)

1、曲線上一點p處的切線是過點p的所有直線中最接近p點附近曲線的直線,則p點處的變化趨勢可以由該點處的切線反映(局部以直代曲)。

2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點處的切線斜率和方程。

五、課外作業(yè)

高中數(shù)學教案模板范文篇4

1.課題

填寫課題名稱(高中代數(shù)類課題)

2.教學目標

(1)知識與技能:

通過本節(jié)課的學習,掌握......知識,提高學生解決實際問題的能力;

(2)過程與方法:

通過......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;

(3)情感態(tài)度與價值觀:

通過本節(jié)課的學習,增強學生的學習興趣,將數(shù)學應(yīng)用到實際生活中,增加學生數(shù)學學習的樂趣。

3.教學重難點

(1)教學重點:本節(jié)課的知識重點

(2)教學難點:易錯點、難以理解的知識點

4.教學方法(一般從中選擇3個就可以了)

(1)討論法

(2)情景教學法

(3)問答法

(4)發(fā)現(xiàn)法

(5)講授法

5.教學過程

(1)導入

簡單敘述導入課題的方式和方法(例:復習、類比、情境導出本節(jié)課的課題)

(2)新授課程(一般分為三個小步驟)

①簡單講解本節(jié)課基礎(chǔ)知識點(例:奇函數(shù)的定義)。

②歸納總結(jié)該課題中的重點知識內(nèi)容,尤其對該注意的一些情況設(shè)置易錯點,進行強調(diào)。可以設(shè)計分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點。設(shè)置定義域不關(guān)于原點對稱的函數(shù)是否為奇函數(shù)的易錯點)。

③拓展延伸,將所學知識拓展延伸到實際題目中,去解決實際生活中的問題。

(在新授課里面一定要表下出講課的大體流程,但是不必太過詳細。)

(3)課堂小結(jié)

教師提問,學生回答本節(jié)課的收獲。

(4)作業(yè)提高

布置作業(yè)(盡量與實際生活相聯(lián)系,有所創(chuàng)新)。

6.教學板書

高中數(shù)學教案模板范文篇5

教學目標:

1。通過生活中優(yōu)化問題的學習,體會導數(shù)在解決實際問題中的作用,促進

學生全面認識數(shù)學的科學價值、應(yīng)用價值和文化價值。

2。通過實際問題的研究,促進學生分析問題、解決問題以及數(shù)學建模能力的提高。

教學重點:

如何建立實際問題的目標函數(shù)是教學的重點與難點。

教學過程:

一、問題情境

問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時面積最大?

問題2把長為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個正方形面積之各最小?

問題3做一個容積為256l的方底無蓋水箱,它的高為多少時材料最???

二、新課引入

導數(shù)在實際生活中有著廣泛的應(yīng)用,利用導數(shù)求最值的方法,可以求出實際生活中的某些最值問題。

1。幾何方面的應(yīng)用(面積和體積等的最值)。

2。物理方面的應(yīng)用(功和功率等最值)。

3。經(jīng)濟學方面的應(yīng)用(利潤方面最值)。

三、知識建構(gòu)

例1在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?

說明1解應(yīng)用題一般有四個要點步驟:設(shè)——列——解——答。

說明2用導數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類似,加一步與幾個極

值及端點值比較即可。

例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應(yīng)怎樣選取,才

能使所用的材料最?。?/p>

變式當圓柱形金屬飲料罐的表面積為定值s時,它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最省?

說明1這種在定義域內(nèi)僅有一個極值的函數(shù)稱單峰函數(shù)。

說明2用導數(shù)法求單峰函數(shù)最值,可以對一般的求法加以簡化,其步驟為:

s1列:列出函數(shù)關(guān)系式。

s2求:求函數(shù)的導數(shù)。

s3述:說明函數(shù)在定義域內(nèi)僅有一個極大(小)值,從而斷定為函數(shù)的最大(?。┲?,必要時作答。

例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動勢為。外電阻為

多大時,才能使電功率最大?最大電功率是多少?

說明求最值要注意驗證等號成立的條件,也就是說取得這樣的值時對應(yīng)的自變量必須有解。

例4強度分別為a,b的兩個光源a,b,它們間的距離為d,試問:在連接這兩個光源的線段ab上,何處照度最???試就a=8,b=1,d=3時回答上述問題(照度與光的強度成正比,與光源的距離的平方成反比)。

例5在經(jīng)濟學中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤函數(shù),記為。

(1)設(shè),生產(chǎn)多少單位產(chǎn)品時,邊際成本最低?

(2)設(shè),產(chǎn)品的單價,怎樣的定價可使利潤最大?

四、課堂練習

1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。

2。在半徑為r的圓內(nèi),作內(nèi)接等腰三角形,當?shù)走吷细邽?時,它的面積最大。

3。有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起做成一個無蓋小盒,要使紙盒的容積最大,問剪去的小正方形邊長應(yīng)為多少?

4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時,希望在斷面abcd的面積為定值s時,使得濕周l=ab+bc+cd最小,這樣可使水流阻力小,滲透少,求此時的高h和下底邊長b。

五、回顧反思

(1)解有關(guān)函數(shù)最大值、最小值的實際問題,需要分析問題中各個變量之間的關(guān)系,找出適當?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實際意義。

(2)根據(jù)問題的實際意義來判斷函數(shù)最值時,如果函數(shù)在此區(qū)間上只有一個極值點,那么這個極值就是所求最值,不必再與端點值比較。

(3)相當多有關(guān)最值的實際問題用導數(shù)方法解決較簡單。

六、課外作業(yè)

課本第38頁第1,2,3,4題。