2022版人教版八年級上冊數學教案6篇

時間:2022-10-02 作者:couple 備課教案

教案是教師為了提高教學水平預先撰寫的書面表達,在成為一名教師后,相信你一定經常使用到教案,范文社小編今天就為您帶來了2022版人教版八年級上冊數學教案6篇,相信一定會對你有所幫助。

2022版人教版八年級上冊數學教案6篇

2022版人教版八年級上冊數學教案篇1

一、教學目標:

1、加深對加權平均數的理解

2、會根據頻數分布表求加權平均數,從而解決一些實際問題

3、會用計算器求加權平均數的值

二、重點、難點和難點的突破方法:

1、重點:根據頻數分布表求加權平均數

2、難點:根據頻數分布表求加權平均數

3、難點的突破方法:

首先應先復習組中值的定義,在七年級下教材p72中已經介紹過組中值定義。因為在根據頻數分布表求加權平均數近似值過程中要用到組中值去代替一組數據中的每個數據的值,所以有必要在這里復習組中值定義。

應給學生介紹為什么可以利用組中值代替一組數據中的每個數據的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數據分布較為均勻時,比如教材p140探究問題的表格中的第三組數據,它的范圍是41≤x≤61,共有20個數據,若分布較為平均,41、42、43、44…60個出現1次,那么這組數據的和為41+42+…+60=1010。而用組中值51去乘以頻數20恰好為1020≈1010,即當數據分布較為平均時組中值恰好近似等于它的平均數。所以利用組中值x頻數去代替這組數據的和還是比較合理的,而且這樣做的好處是簡化了計算量。

為了更好的理解這種近似計算的方法和合理性,可以讓學生去讀統(tǒng)計表,體會表格的實際意義。

三、例習題的意圖分析

1、教材p140探究欄目的意圖。

(1)、主要是想引出根據頻數分布表求加權平均數近似值的計算方法。

(2)、加深了對“權”意義的理解:當利用組中值近似取代替一組數據中的平均值時,頻數恰好反映這組數據的輕重程度,即權。

這個探究欄目也可以幫助學生去回憶、復習七年級下的關于頻數分布表的一些內容,比如組、組中值及頻數在表中的具體意義。

2、教材p140的思考的意圖。

(1)、使學生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題

(2)、幫助學生理解表中所表達出來的信息,培養(yǎng)學生分析數據的能力。

3、p141利用計算器計算平均值

這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產生明顯對比。一則由于學校中學生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內容不是利用計算器求加權平均數,但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數據較大、較多的計算也變得容易些了。

四、課堂引入

采用教材原有的引入問題,設計的幾個問題如下:

(1)、請同學讀p140探究問題,依據統(tǒng)計表可以讀出哪些信息

(2)、這里的組中值指什么,它是怎樣確定的?

(3)、第二組數據的頻數5指什么呢?

(4)、如果每組數據在本組中分布較為均勻,比組數據的平均值和組中值有什么關系。

五、隨堂練習

1、某校為了了解學生作課外作業(yè)所用時間的情況,對學生作課外作業(yè)所用時間進行調查,下表是該校初二某班50名學生某一天做數學課外作業(yè)所用時間的情況統(tǒng)計表

所用時間t(分鐘)人數

0

0

20

30

40

50

(1)、第二組數據的組中值是多少?

(2)、求該班學生平均每天做數學作業(yè)所用時間

2、某班40名學生身高情況如下圖,

請計算該班學生平均身高

答案1.(1).15. (2)28. 2. 165

、課后練習:

1、某公司有15名員工,他們所在的部門及相應每人所創(chuàng)的年利潤如下表

部門a b c d e f g

人數1 1 2 4 2 2 5

每人創(chuàng)得利潤20 5 2.5 2 1.5 1.5 1.2

該公司每人所創(chuàng)年利潤的平均數是多少萬元?

2、下表是截至到20xx年費爾茲獎得主獲獎時的年齡,根據表格中的信息計算獲費爾茲獎得主獲獎時的平均年齡?

年齡頻數

28≤x

30≤x

32≤x

34≤x

36≤x

38≤x

40≤x

3、為調查居民生活環(huán)境質量,環(huán)保局對所轄的50個居民區(qū)進行了噪音(單位:分貝)水平的調查,結果如下圖,求每個小區(qū)噪音的平均分貝數。

答案:1.約2.95萬元2.約29歲3.60.54分貝

2022版人教版八年級上冊數學教案篇2

一、教學目標

1.理解分式的基本性質.

2.會用分式的基本性質將分式變形.

二、重點、難點

1.重點:理解分式的基本性質.

2.難點:靈活應用分式的基本性質將分式變形.

3.認知難點與突破方法

教學難點是靈活應用分式的基本性質將分式變形.突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質.應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.

三、練習題的意圖分析

1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

2.p9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。

教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解。

3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5。

四、課堂引入

1.請同學們考慮:與相等嗎?與相等嗎?為什么?

2.說出與之間變形的過程,與之間變形的過程,并說出變形依據?

3.提問分數的基本性質,讓學生類比猜想出分式的基本性質.

五、例題講解

p7例2.填空:

[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.

p11例3.約分:

[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結果要是最簡分式.

p11例4.通分:

[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.

2022版人教版八年級上冊數學教案篇3

一、教學目標

1、認識中位數和眾數,并會求出一組數據中的眾數和中位數。

2、理解中位數和眾數的意義和作用。它們也是數據代表,可以反映一定的數據信息,幫助人們在實際問題中分析并做出決策。

3、會利用中位數、眾數分析數據信息做出決策。

二、重點、難點和難點的突破方法:

1、重點:認識中位數、眾數這兩種數據代表

2、難點:利用中位數、眾數分析數據信息做出決策。

3、難點的突破方法:

首先應交待清楚中位數和眾數意義和作用:

中位數僅與數據的排列位置有關,某些數據的變動對中位數沒有影響,中位數可能出現在所給的數據中,當一組數據中的個別數據變動較大時,可用中位數描述其趨勢。眾數是當一組數據中某一重復出現次數較多時,人們往往關心的一個量,眾數不受極端值的影響,這是它的一個優(yōu)勢,中位數的計算很少不受極端值的影響。

教學過程中注重雙基,一定要使學生能夠很好的掌握中位數和眾數的求法,求中位數的步驟:⑴將數據由小到大(或由大到小)排列,⑵數清數據個數是奇數還是偶數,如果數據個數為奇數則取中間的數,如果數據個數為偶數,則取中間位置兩數的平均值作為中位數。求眾數的方法:找出頻數最多的那個數據,若幾個數據頻數都是最多且相同,此時眾數就是這多個數據。

在利用中位數、眾數分析實際問題時,應根據具體情況,課堂上教師應多舉實例,使同學在分析不同實例中有所體會。

三、例習題的意圖分析

1、教材p143的例4的意圖

(1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學中常用到一種解決問題的方法:對于數據較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結論去估計總體的情況。

(2)、這個例題另一個意圖是交待了當數據個數為偶數時,中位數的求法和解題步驟。(因為在前面有介紹中位數求法,這里不再重述)

(3)、問題2顯然反映學習中位數的意義:它可以估計一個數據占總體的相對位置,說明中位數是統(tǒng)計學中的一個重要的數據代表。

(4)、這個例題再一次體現了統(tǒng)計學知識與實際生活是緊密聯系的,所以應鼓勵學生學好這部分知識。

2、教材p145例5的意圖

(1)、通過例5應使學生明白通常對待銷售問題我們要研究的是眾數,它代表該型號的產品銷售,以便給商家合理的建議。

(2)、例5也交待了眾數的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

(3)、例5也反映了眾數是數據代表的一種。

四、課堂引入

嚴格的講教材本節(jié)課沒有引入的問題,而是在復習和延伸中位數的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經和同學們研究過了平均數的這個數據代表。它在分析數據過程中擔當了重要的角色,今天我們來共同研究和認識數據代表中的新成員——中位數和眾數,看看它們在分析數據過程中又起到怎樣的作用。

五、例習題的分析

教材p144例4,從所給的數據可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應將數據重新排列,通過觀察會發(fā)現共有12個數據,偶數個可以取中間的兩個數據146、148,求其平均值,便可得這組數據的中位數。

教材p145例5,由表中第二行可以查到23.5號鞋的頻數,因此這組數據的'眾數可以得到,所提的建議應圍繞利于商家獲得較大利潤提出。

六、隨堂練習

1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)

1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

求這15個銷售員該月銷量的中位數和眾數。

假設銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。

2、某商店3、4月份出售某一品牌各種規(guī)格的空調,銷售臺數如表所示:

1匹1.2匹1.5匹2匹

3月12臺20臺8臺4臺

4月16臺30臺14臺8臺

根據表格回答問題:

商店出售的各種規(guī)格空調中,眾數是多少?

假如你是經理,現要進貨,6月份在有限的資金下進貨單位將如何決定?

答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數據的平均數,卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數又是眾數,是大部分人能達到的額定。

2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調。

七、課后練習

1.數據8、9、9、8、10、8、99、8、10、7、9、9、8的中位數是,眾數是

2.一組數據23、27、20、18、x、12,它的中位數是21,則x的值是.

3.數據92、96、98、100、x的眾數是96,則其中位數和平均數分別是( )

;4.c; 5.(1)15. (2)約97天

2022版人教版八年級上冊數學教案篇4

一、內容和內容解析

1.內容

三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.

2.內容解析

本節(jié)內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現實生活中的真實性,激發(fā)學生熱愛生活、勇于探索的思想感情。

理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用.它也是學習三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識一個準備.

本節(jié)的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系.

二、目標和目標解析

1.教學目標

(1)理解三角形的高、中線與角平分線等概念;

(2)會用工具畫三角形的高、中線與角平分線;

2.教學目標解析

(1)經歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.

(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質.

(3)掌握三角形的高、中線與角平分線的畫法.

(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.

三、教學問題診斷分析

三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上.

三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.

三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯系又有本質的區(qū)別.

2022版人教版八年級上冊數學教案篇5

教學目標

1.知識與技能

領會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.

2.過程與方法

經歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

3.情感、態(tài)度與價值觀

培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.

重、難點與關鍵

1.重點:理解完全平方公式因式分解,并學會應用.

2.難點:靈活地應用公式法進行因式分解.

3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的

教學方法

采用“自主探究”教學方法,在教師適當指導下完成本節(jié)課內容.

教學過程

一、回顧交流,導入新知

?問題牽引】

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

?知識遷移】

2.計算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

?教師活動】引導學生完成下面兩道題,并運用數學“互逆”的思想,尋找因式分解的規(guī)律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

?學生活動】從逆向思維的角度入手,很快得到下面答案:

解:

(1)m2-8mn+16n2=(m-4n)2;

(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;

(4)a2-2ab+b2=(a-b)2.

?歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例學習,應用所學

?例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;

(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

?例2】如果x2+axy+16y2是完全平方,求a的值.

?思路點撥】根據完全平方式的定義,解此題時應分兩種情況,即兩數和的平方或者兩數差的平方,由此相應求出a的值,即可求出a3.

三、隨堂練習,鞏固深化

課本p170練習第1、2題.

?探研時空】

1.已知x+y=7,xy=10,求下列各式的值.

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值.

四、課堂總結,發(fā)展?jié)撃?/p>

由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在運用公式因式分解時,要注意:

(1)每個公式的形式與特點,通過對多項式的項數、次數等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當的組合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解.

五、布置作業(yè),專題突破

2022版人教版八年級上冊數學教案篇6

?梯形》教案

教學目標:

情意目標:培養(yǎng)學生團結協作的精神,體驗探究成功的樂趣。

能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。

認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。

教學重點、難點

重點:等腰梯形性質的探索;

難點:梯形中輔助線的添加。

教學課件:powerpoint演示文稿

教學方法:啟發(fā)法、

學習方法:討論法、合作法、練習法

教學過程:

(一)導入

1、出示圖片,說出每輛汽車車窗形狀(投影)

2、板書課題:5梯形

3、練習:下列圖形中哪些圖形是梯形?(投影)

4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

6、特殊梯形的.分類:(投影)

(二)等腰梯形性質的探究

?探究性質一】

思考:在等腰梯形中,如果將一腰ab沿ad的方向平移到de的位置,那么所得的△dec是怎樣的三角形?(投影)

猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

如圖,等腰梯形abcd中,ad∥bc,ab=cd。求證:∠b=∠c

想一想:等腰梯形abcd中,∠a與∠d是否相等?為什么?

等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

?操練】

(1)如圖,等腰梯形abcd中,ad∥bc,ab=cd,∠b=60o,bc=10cm,ad=4cm,則腰ab=cm。(投影)

(2)如圖,在等腰梯形abcd中,ad∥bc,ab=cd,de∥ac,交bc的延長線于點e,ca平分∠bcd,求證:∠b=2∠e.(投影)

?探究性質二】

如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

如上圖,等腰梯形abcd中,ad∥bc,ab=cd,ac、bd相交于o,求證:ac=bd。(投影)

等腰梯形性質:等腰梯形的兩條對角線相等。

?探究性質三】

問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

等腰梯形性質:同以底上的兩個內角相等,對角線相等

(三)質疑反思、小結

讓學生回顧本課教學內容,并提出尚存問題;

學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。