函數(shù)的教案5篇

時間:2022-11-29 作者:lcbkmm 備課教案

作為教師在寫教案時一定要注意邏輯思路是清晰的,為了保證接下來的教學(xué)工作順利進行,我們需要制定一份完整的教案,以下是范文社小編精心為您推薦的函數(shù)的教案5篇,供大家參考。

函數(shù)的教案5篇

函數(shù)的教案篇1

教材分析:

“指數(shù)函數(shù)”是在學(xué)生系統(tǒng)地學(xué)習(xí)了函數(shù)概念及性質(zhì),掌握了指數(shù)與指數(shù)冪的運算性質(zhì)的基礎(chǔ)上展開研究的.作為重要的基本初等函數(shù)之一,指數(shù)函數(shù)既是函數(shù)近代定義及性質(zhì)的第一次應(yīng)用,也為今后研究其他函數(shù)提供了方法和模式,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ).指數(shù)函數(shù)在知識體系中起了承上啟下的作用,同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,因此它也是對學(xué)生進行情感價值觀教育的好素材,所以指數(shù)函數(shù)應(yīng)重點研究.

學(xué)情分析:

通過初中階段的學(xué)習(xí)和高中對函數(shù)、指數(shù)的運算等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)已經(jīng)有了一定的認識,學(xué)生對用“描點法”描繪出函數(shù)圖象的方法已基本掌握,已初步了解數(shù)形結(jié)合的思想.另外,學(xué)生對由特殊到一般再到特殊的數(shù)學(xué)活動過程已有一定的體會.

教學(xué)目標(biāo):

知識與技能:理解指數(shù)函數(shù)的概念和意義,能正確作出其圖象,掌握指數(shù)函數(shù)的性質(zhì)并能自覺、靈活地應(yīng)用其性質(zhì)(單調(diào)性、中介值)比較大小.

過程與方法:

(1) 體會從特殊到一般再到特殊的研究問題的方法,培養(yǎng)學(xué)生觀察、歸納、猜想、概括的能力,讓學(xué)生了解數(shù)學(xué)來源于生活又在生活中有廣泛的應(yīng)用;理解并掌握探求函數(shù)性質(zhì)的一般方法;

(2) 從數(shù)和形兩方面理解指數(shù)函數(shù)的性質(zhì),體會數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想方法,提高思維的靈活性,培養(yǎng)學(xué)生直觀、嚴(yán)謹(jǐn)?shù)乃季S品質(zhì).

情感、態(tài)度與價值觀:

(1)體驗從特殊到一般再到特殊的學(xué)習(xí)規(guī)律,認識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題,激發(fā)學(xué)生自主探究的精神,在探究過程中體驗合作學(xué)習(xí)的樂趣;

(2)讓學(xué)生在數(shù)形結(jié)合中感悟數(shù)學(xué)的統(tǒng)一美、和諧美,進一步培養(yǎng)學(xué)生的學(xué)習(xí)興趣。

教學(xué)重點:指數(shù)函數(shù)的圖象和性質(zhì)

教學(xué)難點:指數(shù)函數(shù)概念的引入及指數(shù)函數(shù)性質(zhì)的應(yīng)用

教法研究:

本節(jié)課準(zhǔn)備由實際問題引入指數(shù)函數(shù)的概念,這樣可以讓學(xué)生知道指數(shù)函數(shù)的概念來源于客觀實際,便于學(xué)生接受并有利于培養(yǎng)學(xué)生用數(shù)學(xué)的意識.

利用函數(shù)圖象來研究函數(shù)性質(zhì)是函數(shù)中的一個非常重要的思想,本節(jié)課將是利用特殊的指數(shù)函數(shù)圖象歸納總結(jié)指數(shù)函數(shù)的.性質(zhì),這樣便于學(xué)生研究其變化規(guī)律,理解其性質(zhì)并掌握一般地探求函數(shù)性質(zhì)的方法 同時運用現(xiàn)代信息技術(shù)學(xué)習(xí)、探索和解決問題,幫助學(xué)生理解新只是。

教學(xué)過程:

一、問題情境 :

問題1:某種細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,以此類推,一個這樣的細胞分裂x次后,得到的細胞個數(shù)y與x的函數(shù)關(guān)系式是什么?

問題2:一種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過一年剩余質(zhì)量約是原來的 ,設(shè)該物質(zhì)的初始質(zhì)量為1,經(jīng)過 年后的剩余質(zhì)量為 ,你能寫出 之間的函數(shù)關(guān)系式嗎?

分析可知,函數(shù)的關(guān)系式分別是 與

問題3:在問題1和2中,兩個函數(shù)的自變量都是正整數(shù),但在實際問題中自變量不一定都是正整數(shù),比如在問題2中,我們除了關(guān)心1年、2年、3年后該物質(zhì)的剩余量外,還想知道3個月、一年半后該物質(zhì)的剩余量,怎么辦?

這就需要對函數(shù)的定義域進行擴充,結(jié)合指數(shù)概念的的擴充,我們也可以將函數(shù)的定義域擴充至全體實數(shù),這樣就得到了一個新的函數(shù)——指數(shù)函數(shù).

二、數(shù)學(xué)建構(gòu) :

1]定義:

一般地,函數(shù) 叫做指數(shù)函數(shù),其中 .

問題4:為什么規(guī)定 ?

問題5:你能舉出指數(shù)函數(shù)的例子嗎?

閱讀材料(“放射性碳法”測定古物的年代):

在動植物體內(nèi)均含有微量的放射性 ,動植物死亡后,停止了新陳代謝, 不在產(chǎn)生,且原有的 會自動衰變.經(jīng)過5740年( 的半衰期),它的殘余量為原來的一半.經(jīng)過科學(xué)測定,若 的原始含量為1,則經(jīng)過x年后的殘留量為 = .

這種方法經(jīng)常用來推算古物的年代.

練習(xí)1:判斷下列函數(shù)是否為指數(shù)函數(shù).

(1) (2)

(3) (4)

說明:指數(shù)函數(shù)的解析式y(tǒng)= 中, 的系數(shù)是1.

有些函數(shù)貌似指數(shù)函數(shù),實際上卻不是,如y= +k (a>0且a 1,k z);

有些函數(shù)看起來不像指數(shù)函數(shù),實際上卻是,如y= (a>0,且a 1),因為它可以化為y= ,其中 >0,且 1

2]通過圖象探究指數(shù)函數(shù)的性質(zhì)及其簡單應(yīng)用:利用幾何畫板及其他多媒體軟件和學(xué)生一起完成

問題6:我們研究函數(shù)的性質(zhì),通常都研究哪些性質(zhì)?一般如何去研究?

函數(shù)的定義域,值域,單調(diào)性,奇偶性等;

利用函數(shù)圖象研究函數(shù)的性質(zhì)

問題7:作函數(shù)圖象的一般步驟是什么?

列表,描點,作圖

探究活動1:用列表描點法作出 , 的圖像(借助幾何畫板演示),觀察、比較這兩個函數(shù)的圖像,我們可以得到這兩個函數(shù)哪些共同的性質(zhì)?請同學(xué)們仔細觀察.

引導(dǎo)學(xué)生分析圖象并總結(jié)此時指數(shù)函數(shù)的性質(zhì)(底數(shù)大于1):

(1)定義域?r

(2)值域?函數(shù)的值域為

(3)過哪個定點?恒過 點,即

(4)單調(diào)性? 時, 為 上的增函數(shù)

(5)何時函數(shù)值大于1?小于1? 當(dāng) 時, ;當(dāng) 時,

問題8::是否所有的指數(shù)函數(shù)都是這樣的性質(zhì)?你能找出與剛才的函數(shù)性質(zhì)不一樣的指數(shù)函數(shù)嗎?

(引導(dǎo)學(xué)生自我分析和反思,培養(yǎng)學(xué)生的反思能力和解決問題的能力).

根據(jù)學(xué)生的發(fā)現(xiàn),再總結(jié)當(dāng)?shù)讛?shù)小于1時指數(shù)函數(shù)的相關(guān)性質(zhì)并作比較.

問題9:到現(xiàn)在,你能自制一份表格,比較 及 兩種不同情況下 的圖象和性質(zhì)嗎?

(學(xué)生完成表格的設(shè)計,教師適當(dāng)引導(dǎo))

函數(shù)的教案篇2

教學(xué)目標(biāo):

知識與技能

1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。

3、會對一個具體實例進行概括抽象成為數(shù)學(xué)問題。

過程與方法

1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。

2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力。

情感與價值觀

1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。

教學(xué)重點:

1、掌握函數(shù)概念。

2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。

3、能把實際問題抽象概括為函數(shù)問題。

教學(xué)難點:

1、理解函數(shù)的概念。

2、能把實際問題抽象概括為函數(shù)問題。

教學(xué)過程設(shè)計:

一、創(chuàng)設(shè)問題情境,導(dǎo)入新課

?師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?

函數(shù)的教案篇3

一、目標(biāo)知識與技能:了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系 ; 能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間。

過程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;

情感、態(tài)度與價值觀:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

二、重點難點

教學(xué)重點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過4次的多項式函數(shù)的單調(diào)區(qū)間

教學(xué)難點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過4次的多項式函數(shù)的單調(diào)區(qū)間

三、教學(xué)過程:

函數(shù)的贈與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的.通過研究函數(shù)的這些性質(zhì),我們可以對數(shù)量的變化規(guī)律有一個基本的了解.我們以導(dǎo)數(shù)為工具,對研究函數(shù)的增減及極值和最值帶來很大方便.

四、學(xué)情分析

我們的學(xué)生屬于平行分班,沒有實驗班,學(xué)生已有的知識和實驗水平有差距。需要教師指導(dǎo)并借助動畫給予直觀的認識。

五、教學(xué)方法

發(fā)現(xiàn)式、啟發(fā)式

新授課教學(xué)基本環(huán)節(jié):預(yù)習(xí)檢查、總結(jié)疑惑→情境導(dǎo)入、展示目標(biāo)→合作探究、精講點撥→反思總結(jié)、當(dāng)堂檢測→發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)

六、課前準(zhǔn)備

1.學(xué)生的學(xué)習(xí)準(zhǔn)備:

2.教師的教學(xué)準(zhǔn)備:多媒體課件制作,課前預(yù)習(xí)學(xué)案,課內(nèi)探究學(xué)案,課后延伸拓展學(xué)案。

七、課時安排:

1課時

八、教學(xué)過程

(一)預(yù)習(xí)檢查、總結(jié)疑惑

檢查落實了學(xué)生的預(yù)習(xí)情況并了解了學(xué)生的疑惑,使教學(xué)具有了針對性。

提問

1.判斷函數(shù)的單調(diào)性有哪些方法?

(引導(dǎo)學(xué)生回答“定義法”,“圖象法”。)

2.比如,要判斷 y=x2 的單調(diào)性,如

何進行?(引導(dǎo)學(xué)生回顧分別用定義法、圖象法完成。)

3.還有沒有其它方法?如果遇到函數(shù):

y=x3-3x判斷單調(diào)性呢?(讓學(xué)生短時

間內(nèi)嘗試完成,結(jié)果發(fā)現(xiàn):用“定義法”,

作差后判斷差的符號麻煩;用“圖象法”,圖象很難畫出來。)

4.有沒有捷徑?(學(xué)生疑惑,由此引出課題)這就要用到咱們今天要學(xué)的導(dǎo)數(shù)法。

以問題形式復(fù)習(xí)相關(guān)的舊知識,同時引出新問題:三次函數(shù)判斷單調(diào)性,定義法、圖象法很不方便,有沒有捷徑?通過創(chuàng)設(shè)問題情境,使學(xué)生產(chǎn)生強烈的問題意識,積極主動地參與到學(xué)習(xí)中來。

(二)情景導(dǎo)入、展示目標(biāo)。

設(shè)計意圖:步步導(dǎo)入,吸引學(xué)生的注意力,明確學(xué)習(xí)目標(biāo)。

(探索函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系) 問:函數(shù)的單調(diào)性和導(dǎo)數(shù)有何關(guān)系呢?

教師仍以y=x2為例,借助幾何畫板動態(tài)演示,讓學(xué)生記錄結(jié)果在課前發(fā)的表格第二行中:

函數(shù)及圖象 單調(diào)性 切線斜率k的正負 導(dǎo)數(shù)的正負

問:有何發(fā)現(xiàn)?(學(xué)生回答)

問:這個結(jié)果是否具有一般性呢?

(三)合作探究、精講點撥。

我們來考察兩個一般性的例子:

(教師指導(dǎo)學(xué)生動手實驗:把準(zhǔn)備的牙簽放在表中曲線y=f(x)的圖象上,作為曲線的切線,移動切線并記錄結(jié)果在上表第三、四行中。)

問:能否得出什么規(guī)律?

讓學(xué)生歸納總結(jié),教師簡單板書:

在某個區(qū)間(a,b)內(nèi),

若f ' (x)>0,則f(x)在(a,b)上是增函數(shù);

若f ' (x)

教師說明:

要正確理解“某個區(qū)間”的含義,它必需是定義域內(nèi)的某個區(qū)間。

1.這一部分是后面利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的理論依據(jù),重要性不言而喻,而學(xué)生又只學(xué)習(xí)了導(dǎo)數(shù)的意義和一些基本運算,要想得到嚴(yán)格的證明是不現(xiàn)實的,因此,只要求學(xué)生能借助幾何直觀得出結(jié)論,這與新課標(biāo)中的要求是相吻合的。

2.教師對具體例子進行動態(tài)演示,學(xué)生對一般情況進行實驗驗證。由觀察、猜想到歸納、總結(jié),讓學(xué)生體驗知識的發(fā)現(xiàn)、發(fā)生過程,變灌注知識為學(xué)生主動獲取知識,從而使之成為課堂教學(xué)活動的主體。

3.得出結(jié)論后,教師強調(diào)正確理解“某個區(qū)間”的含義,它必需是定義域內(nèi)的某個區(qū)間。這一點將在例1的變式3具體體現(xiàn)。

4.考慮到本節(jié)課堂容量較大,這里沒有提到函數(shù)在個別點處導(dǎo)數(shù)為零不影響單調(diào)性的情況(如y=x3在x=0處),這一問題將在后續(xù)課程中給學(xué)生補充。

應(yīng)用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間

例1.求函數(shù)y=x2-3x的單調(diào)區(qū)間。

(引導(dǎo)學(xué)生得出解題思路:求導(dǎo) →

令f ' (x)>0,得函數(shù)單調(diào)遞增區(qū)間,令f ' (x)

變式1:求函數(shù)y=3x3-3x2的單調(diào)區(qū)間。

(競賽活動:將全班同學(xué)分成兩大組指定分別用單調(diào)性的定義,和用求導(dǎo)數(shù)的方法解答,每組各推薦一位同學(xué)的答案進行投影。)

求單調(diào)區(qū)間是導(dǎo)數(shù)的一個重要應(yīng)用,也是本節(jié)重點,為此,設(shè)計了例1及三個變式:

設(shè)計例1可引導(dǎo)學(xué)生得出用導(dǎo)數(shù)法求單調(diào)區(qū)間的解題步驟

設(shè)計變式1及競賽活動可以激發(fā)學(xué)生的`學(xué)習(xí)熱情,讓他們學(xué)會比較,并深刻體驗導(dǎo)數(shù)法的優(yōu)越性。

鞏固提高

變式2:求函數(shù)y=3e x -3x單調(diào)區(qū)間。

(學(xué)生上黑板解答)

變式3:求函數(shù) 的單調(diào)區(qū)間。

設(shè)計變式2且讓學(xué)生上黑板解答可以規(guī)范解題格式,同時使學(xué)生了解用導(dǎo)數(shù)法可以求更復(fù)雜的函數(shù)的單調(diào)區(qū)間。

設(shè)計變式3是可使學(xué)生體會考慮定義域的必要性

例1及三個變式,依次涉及二次,三次函數(shù),含指數(shù)的函數(shù)、反比例函數(shù),這樣一題多變,逐步深化,從而讓學(xué)生領(lǐng)會:如何應(yīng)用及哪類單調(diào)性問題該應(yīng)用“導(dǎo)數(shù)法”解決。

多媒體展示探究思考題。

在學(xué)生分組實驗的過程中教師巡回觀察指導(dǎo)。 (課堂實錄) ,

(四)反思總結(jié),當(dāng)堂檢測。

教師組織學(xué)生反思總結(jié)本節(jié)課的主要內(nèi)容,并進行當(dāng)堂檢測。

設(shè)計意圖:引導(dǎo)學(xué)生構(gòu)建知識網(wǎng)絡(luò)并對所學(xué)內(nèi)容進行簡單的反饋糾正。(課堂實錄)

(五)發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)。

設(shè)計意圖:布置下節(jié)課的預(yù)習(xí)作業(yè),并對本節(jié)課鞏固提高。教師課后及時批閱本節(jié)的延伸拓展訓(xùn)練。

九、板書設(shè)計

例1.求函數(shù)y=3x2-3x的單調(diào)區(qū)間。

變式1:求函數(shù)y=3x3-3x2的單調(diào)區(qū)間。

變式2:求函數(shù)y=3e x -3x單調(diào)區(qū)間。

變式3:求函數(shù) 的單調(diào)區(qū)間。

十、教學(xué)反思

本課的設(shè)計采用了課前下發(fā)預(yù)習(xí)學(xué)案,學(xué)生預(yù)習(xí)本節(jié)內(nèi)容,找出自己迷惑的地方。課堂上師生主要解決重點、難點、疑點、考點、探究點以及學(xué)生學(xué)習(xí)過程中易忘、易混點等,最后進行當(dāng)堂檢測,課后進行延伸拓展,以達到提高課堂效率的目的。

函數(shù)的教案篇4

一、教學(xué)目標(biāo):

1、知識與技能:

(1) 結(jié)合實例,了解正整數(shù)指數(shù)函數(shù)的概念.

(2)能夠求出正整數(shù)指數(shù)函數(shù)的解析式,進一步研究其性質(zhì).

2、 過程與方法:

(1)讓學(xué)生借助實例,了解正整數(shù)指數(shù)函數(shù),體會從具體到一般,從個別到整體的研究過程和研究方法.

(2)從圖像上觀察體會正整數(shù)指數(shù)函數(shù)的性質(zhì),為這一章的學(xué)習(xí)作好鋪墊.

3、情感.態(tài)度與價值觀:使學(xué)生通過學(xué)習(xí)正整數(shù)指數(shù)函數(shù)體會學(xué)習(xí)指數(shù)函數(shù)的重要意義,增強學(xué)習(xí)研究函數(shù)的積極性和自信心.

二、教學(xué)重點:正整數(shù)指數(shù)函數(shù)的定義.教學(xué)難點:正整數(shù)指數(shù)函數(shù)的解析式的確定.

三、學(xué)法指導(dǎo):學(xué)生觀察、思考、探究.教學(xué)方法:探究交流,講練結(jié)合。

四、教學(xué)過程

(一)新課導(dǎo)入

[互動過程1]:

(1)請你用列表表示1個細胞分裂次數(shù)分別

為1,2,3,4,5,6,7,8時,得到的細胞個數(shù);

(2)請你用圖像表示1個細胞分裂的次數(shù)n( )與得到的細

胞個數(shù)y之間的關(guān)系;

(3)請你寫出得到的細胞個數(shù)y與分裂次數(shù)n之間的關(guān)系式,試用

科學(xué)計算器計算細胞分裂15次、20次得到的細胞個數(shù).

解:

(1)利用正整數(shù)指數(shù)冪的運算法則,可以算出1個細胞分裂1,2,3,

4,5,6,7,8次后,得到的細胞個數(shù)

分裂次數(shù) 1 2 3 4 5 6 7 8

細胞個數(shù) 2 4 8 16 32 64 128 256

(2)1個細胞分裂的次數(shù) 與得到的細胞個數(shù) 之間的關(guān)系可以用圖像表示,它的圖像是由一些孤立的點組成

(3)細胞個數(shù) 與分裂次數(shù) 之間的關(guān)系式為 ,用科學(xué)計算器算得 ,

所以細胞分裂15次、20次得到的細胞個數(shù)分別為32768和1048576.

探究:從本題中得到的函數(shù)來看,自變量和函數(shù)值分別是什么?此函數(shù)是什么類型的函數(shù)? 細胞個數(shù) 隨著分裂次數(shù) 發(fā)生怎樣變化?你從哪里看出?

小結(jié):從本題中可以看出我們得到的細胞分裂個數(shù)都是底數(shù)為2的指數(shù),而且指數(shù)是變量,取值為正整數(shù). 細胞個數(shù) 與分裂次數(shù) 之間的關(guān)系式為 .細胞個數(shù) 隨著分裂次數(shù) 的增多而逐漸增多.

[互動過程2]:問題2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量q近似滿足關(guān)系式q=q00.9975 t,其中q0是臭氧的初始量,t是時間(年),這里設(shè)q0=1.

(1)計算經(jīng)過20,40,60,80,100年,臭氧含量q;

(2)用圖像表示每隔20年臭氧含量q的變化;

(3)試分析隨著時間的增加,臭氧含量q是增加還是減少.

解:(1)使用科學(xué)計算器可算得,經(jīng)過20,40,60,80,100年,臭氧含量q的值分別為0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;

(2)用圖像表示每隔20年臭氧含量q的變化如圖??

示,它的圖像是由一些孤立的點組成.

(3)通過計算和觀察圖形可以知道, 隨著時間的增加,臭氧含量q在逐漸減少.

探究:從本題中得到的函數(shù)來看,自變量和函數(shù)值分別又是什么?此函數(shù)是什么類型的函數(shù)?,臭氧含量q隨著時間的增加發(fā)生怎樣變化?你從哪里看出?

小結(jié):從本題中可以看出我們得到的臭氧含量q都是底數(shù)為0.9975的指數(shù),而且指數(shù)是變量,取值為正整數(shù). 臭氧含量q近似滿足關(guān)系式q=0.9975 t, 隨著時間的增加,臭氧含量q在逐漸減少.

[互動過程3]:上面兩個問題所得的函數(shù)有沒有共同點?你能統(tǒng)一嗎?自變量的取值范圍又是什么?這樣的函數(shù)圖像又是什么樣的?為什么?

正整數(shù)指數(shù)函數(shù)的定義:一般地,函數(shù) 叫作正整數(shù)指數(shù)函數(shù),其中 是自變量,定義域是正整數(shù)集 .

說明: 1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù).

(二)、例題:某地現(xiàn)有森林面積為1000 ,每年增長5%,經(jīng)過 年,森林面積為 .寫出 , 間的函數(shù)關(guān)系式,并求出經(jīng)過5年,森林的面積.

分析:要得到 , 間的函數(shù)關(guān)系式,可以先一年一年的增長變化,找出規(guī)律,再寫出 , 間的函數(shù)關(guān)系式.

解: 根據(jù)題意,經(jīng)過一年, 森林面積為1000(1+5%) ;經(jīng)過兩年, 森林面積為1000(1+5%)2 ;經(jīng)過三年, 森林面積為1000(1+5%)3 ;所以 與 之間的函數(shù)關(guān)系式為 ,經(jīng)過5年,森林的面積為1000(1+5%)5=1276.28(hm2).

練習(xí):課本練習(xí)1,2

補充例題:高一某學(xué)生家長去年年底到銀行存入2000元,銀行月利率為2.38%,那么如果他第n個月后從銀行全部取回,他應(yīng)取回錢數(shù)為y,請寫出n與y之間的關(guān)系,一年后他全部取回,他能取回多少?

解:一個月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%),二個月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%)2;,三個月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%)3,, n個月后他應(yīng)取回的錢數(shù)為y=2000(1+2.38%)n; 所以n與y之間的關(guān)系為y=2000(1+2.38%)n (nn+),一年后他全部取回,他能取回的錢數(shù)為y=2000(1+2.38%)12.

補充練習(xí):某工廠年產(chǎn)值逐年按8%的速度遞增,今年的年產(chǎn)值為200萬元,那么第n年后該廠的年產(chǎn)值為多少?

(三)、小結(jié):1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù)。

函數(shù)的教案篇5

一、教學(xué)目的

1.使學(xué)生理解自變量的取值范圍和函數(shù)值的意義。

2.使學(xué)生理解求自變量的取值范圍的兩個依據(jù)。

3.使學(xué)生掌握關(guān)于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會求其函數(shù)值。

4.通過求函數(shù)中自變量的取值范圍使學(xué)生進一步理解函數(shù)概念。

二、教學(xué)重點、難點

重點:函數(shù)自變量取值的求法。

難點:函靈敏處變量取值的確定。

三、教學(xué)過程

復(fù)習(xí)提問

1.函數(shù)的定義是什么?函數(shù)概念包含哪三個方面的內(nèi)容?

2.什么叫分式?當(dāng)x取什么數(shù)時,分式x+2/2x+3有意義?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的條件是什么?

(答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)

4.舉出一個函數(shù)的實例,并指出式中的變量與常量、自變量與函數(shù)。

新課

1.結(jié)合同學(xué)舉出的實例說明解析法的意義:用教學(xué)式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。

2.結(jié)合同學(xué)舉出的實例,說明函數(shù)的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據(jù)是:

(1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達式)有意義。

(2)自變量取值范圍要使實際問題有意義。

3.講解p93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。

推廣與聯(lián)想:請同學(xué)按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。

4.講解p93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點:

(1)例3中的4個小題歸納起來仍是三類題型。

(2)求函數(shù)值的問題實際是求代數(shù)式值的問題。

補充例題

求下列函數(shù)當(dāng)x=3時的函數(shù)值:

(1)y=6x—4;(2)y=——5x2;(3)y=3/7x—1;(4)

(答:(1)y=14;(2)y=—45;(3)y=3/20;(4)y=0。)

小結(jié)

1.解析法的意義:用數(shù)學(xué)式子表示函數(shù)的方法叫解析法。

2.求函數(shù)自變量取值范圍的兩個方法(依據(jù)):

(1)要使函數(shù)的解析式有意義。

①函數(shù)的解析式是整式時,自變量可取全體實數(shù);

②函數(shù)的解析式是分式時,自變量的取值應(yīng)使分母≠0;

③函數(shù)的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)≥0。

(2)對于反映實際問題的函數(shù)關(guān)系,應(yīng)使實際問題有意義。

3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。

練習(xí):p94中1,2,3。

作業(yè):p95~p96中a組3,4,5,6,7。b組1,2。

四、教學(xué)注意問題

1.注意滲透與訓(xùn)練學(xué)生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類題型:整式、分式、二次根式。

2.注意訓(xùn)練與培養(yǎng)學(xué)生的優(yōu)質(zhì)聯(lián)想能力。要求學(xué)生仿照例題自編題目是有效手段。

3.注意培養(yǎng)學(xué)生對于“具體問題要具體分析”的良好學(xué)習(xí)方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。